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ABSTRACT

During the 3 years of this ARO Grant we: measured and computed the drop
size in the immediate vicinity of the nozzle in Diesel-type sprays (1.8);
measured (Appendix B and Ref. 9) and computed (Appendix C and Ref. 10) the drop
velocities in the farfield of non vaporizing Diesel-type sprays; measured (11)
(and are computing) the drop velocities in the farfield of vaporizing Diesel-
type sprays.  The everaif)conclusions are that: the breakup of full-cone Diesel
jets is due primarily to aerodynamic interaction between the liquid surface and
the chamber gas; the initial average size and velocity of the drops formed by
the breakup of the outer surface of the jet can now be estimated and so can the
length of the intact core but with greater uncertainty; after breakup a steady
full-cone spray undergoes a development similar to that of lncompressible jets;
in Diesel engines it is the development region that is of importance; the major

parameter in the difference between full-cone sprays and incompressible jets is

the liquid-to-gas density ratio; in the absence of vaporization the most
advanced of the available spray model reproduce full-cone sprays with adequate
realism for applications; it is not yet known how vaporization changes the
structure of these sprays and if available models adequately reproduce the
changes. ., We also produced a number of summary papers on the mechanism of atomi-
zation (Aprendix A and Refs. 12,13) and on the structure of Diesel sprays
(Appendix D d Ref. 14). One student received his Ph.D. on this subject and is
now at the Reséarch Laboratories of GM (Dr. K.-J. Wu) and several staff members

and visitors worked with us and have now moved on to other positions (Drs. R.D.
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REPORT

Four papers are given in the appendices. Each of the four papers is a sum-
k: mary of much work conducted under this Grant and the following paragraphs are a
t;% summary of the summaries.
LI
:;) In 1972-1976, we made some multi-dimensional computations of engine sprays
fg. (e.g., CST, Vol. 8, pp. 69-84, 1973; SAE TRANS., Vol. 84, pp. 3317-3340; 1975;
?' CST, Vol. 12, pp. 63-74, 1976; AIAA J., Vol. 16, pp. 1053-1061, 1978). Those
| were the first multi-dimensional two-phase engine flow computations and from
§§%. them we learned that quantitative knowledge of the mechanism of break-up of fuel
%?ﬁ jets and of the structure of dense sprays was so poor, and their effects so
o important, that the }eliabiljty of even the computed trends was questionable.
RE% Vast qualitative knowledge of sprays was accumulated in the 30's, primarily
i{; at NACA, often with astute experimental techniques. But when space-resolved
h computations of in-cylinder events became necessary and feasible, the
fiﬁi corresponding space-resolved quantitative spray information simply was missing.
;gé Thus, in 1976 we started a program of detailed measurements of the break-up
‘2_ of fuel jets to establish its mechanism with the final objective of determining
'?: equations for the initial drop sizes and velocities. ARO provided its first
i.xl 3-year support for the perjod July 78 - June 81. Full-cone sprays from single
é;. cylindrical orifices were injected into compressed gases in a constant-volume
§:§ vessel and the spray angle and the tip penetration velocity were measured with
i % photographic techniques in a large variety of conditions. Room temperature was

| employed and vaporization was negligible.

.jz During the second 3-year ARO grant for the period July 81-June 84 drop
s, \ sizes (1) were measured by photography in the immediate vicinity of the nozzle
.
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exit. Also measured by LDV were drop velocities within nonvaporizing sprays at
distances between 2.3 cm and 10 cm from the nozzle (Appendix B). The diameter
of the nozzles used was between 76 and 335 mm. Although drop sizes and veloci-
ties had been measured before, they had not been measured respectively in the
immediate vicinity of the nozzle exit and wlthiﬁ very dense sprays as we did.
With the help of the new data, we sorted out the large amount of often-
contradicting hypotheses that had been made about the formation of Diesel-type
sprays and concluded that atomizing liquid jets are broken up by aerodynamic
forces that are due to the liquid-gas relative velocity. These forces selec-
tively amplify liquid perturbations that are generated within the nozzle. This
particular mechanism was first proposed, in a quantitative way, by W.E. Ranz
(2}, We now understand, or we think we do, the relationship between the many
modes of breakup of liquid jets. They are different manifestations of the same
forces that align themselves differently under different conditions. These for-

ces act on perturbations of the liquid-gas interface. The perturbations, in

turn, are often generated within the nozzle. At low jet velocities, the nozzle
perturbations actually are not very important, but they become progressively
more significant as the jet velocity increases (and the intact length decreased)
and are essential components of the breakup in the atomization regime, i.e. for
engine fuel jets. The mechanisms of breakup of round liquid jets are discussed
in Appendix A.

Actually, as far as the formation of engine sprays is concerned, we get
several lucky breaks. Practical nozzle geometries do not vary much, due to
construction considerations, and influence mostly the initial angle of the spray

and, possibly, the solid core length (3). Both angle and solid core length are
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influenced also, and much more markedly and importantly, by the gas-liquid-
density ratjo. Significantly, they are not strongly affected by any of the
other many parameters (Eqs. 11 and 10a of App. A, also Eqs. 15 and 17 of App.
D) except for the solid core length that is proportinal also to the nozzle
diameter (Eq. 17 of App. D). The initial size of the drops that are formed by
the breakup of the outer surface of the liquid jet is determined mostly by the
Weber number (Eq. 12 of App. A, also Eq. 16 of App. D). The predictions of the
initial angle has now been supported by numerous measurements. That of the ini-
tial drop size has been evaluated only preliminarily (1), But the prediction of
the intact core length is both weaker and largely untested. It is weaker
because it is based on the questionable assumption that the stability con-
siderations that apply to the outer surface of the liquid also apply unchanged
within the jet and all the way down to its axis. It is largely untested because
the length of the liquid core has been measured only once (4) and with a tech-
nique that can be criticized.

Getting back to our overview and assuming that we can estimate the initial
angle of the spray, the initial size of the drops, and the shape and length of

the solid core, i.e. the drop generating surface, we can then compute the sub-

sequent development of the spray. In particular, we can compute the farfield
quantities that we measured (Appendix B), that is: the axial and radial velocity
distributions of the drops at all radial and axial positions within the spray
and for a variety of liquid and gas conditions.

The computations and comparisons with the measured drop velocity are
discussed in Appendix C. They clearly show that our model for Diesel sprays

accurately predicts the average values of the sprays parameters but not the the
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fluctuating component of the drop velocity. More work is now needed on the
interaction between droplet motion and gas turbulence. In Appendix D, the
fourth appendix, we have summarized what we have learned about the formation and
structure of full-cone sprays in all of these studies.

All the measurements and computations that we have discussed so far were
made under Diesel-type conditions except for the temperature that had its room
value. It has been advisable to do so to avoid the trap of having too many pro-
cesses to sort out simultaneously. Actually we have now completed a second
round of drop velocity measurements similar to those discussed in Appendix B
but in vaporizing sprays. We are in the process of studying this new experimen-
tal information and then we intend to make a second set of computations and com-
parisons similar to those of Appendix C.

Notice, however, that to make measurements in vaporizing sprays, first we
had to modify our current experimental apparatus. It is difficult to obtain
controlled. repeatable gas and liquid environments above room temperature with a
closed gas vessel of limited size. Vaporization and wall heat losses cool the

gas and condensation on windows limits optical access, at very least compli-

cating repeatability. Also, the need to empty the vessel after each injection
conflicts with the long time required to gather the large amount of data asso-
ciated with detailed measurements. Thus we decided to build a continuous flow
system and, in order to control separately liquid and gas temperature, it was
also necessary to redesign the fuel injection system to allow for its water
cooling.

Much work was al ., done on, and with, the spray model to which we have

often referred. This model is important because it represents, i.e. embodies,
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our current understaﬁdinﬁ of the structure of these sprays and because is
already in use in several industries, including Cummins (5-7) and Komatsu.

The model computes the unsteady penetration and the steady state of axisym-
metric dense sprays using information about drop sizes and velocities from the
break-up of the fuel jet at the nozzle exit as input. The model solves the
coupled conservation equations for the gas and liquid with an Eulerian scheme
for the gas and a Lagrangian scheme for the drops. The model includes exchange
functions for droplet coalescence, grazing collisions and accounts for the
effect of liquid volume fraction on the rates of exchange of mass, momentum and
energy between the gas drops. The functions representing these thick spray phe-
nomena have been deduced from experimental and theoretical work in cloud phy-
sics, fluidized and packed beds, and transport processes in fixed arrays of
spheres.

In the model, the gas flow-field and droplet size, velocity and tempecrature
probability distribution functions are computed as functions of position and
time in the spray. The optically thick region of the spray close to the nozzle
exit is also computed. This region of dense sprays 1s presently inaccessible to
standard probing measurements and the model offers a means to bridge the
measurements of the jet break-up process at the nozzle exit to the LDV measure-
ments of droplet velocity and size distributions within the optically-thinner
downstream spray.

At present there are three advanced spray models: the CONCHAS-SPRAY of the
Los Alamos National Laboratory, the RPM-SPRAY of Gosmen, and ours. These models
differ both in their physics and in their numerics. But they also overlap.

Thus Gosman and we use k-e gas turbulence submodels whereas LANL uses a k-sub-
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grid. For full-cone sprays, we all use the initial conditions from the jet

break-up process determined at Princeton. We include computations of drop
collisions and coalescence and of the effect of the gas-volume fraction on the
gas-liquid rates of exchange of mass, momentum, and energy. Gosman does not
consider such processes and LANL has recently adopted our collisions and
coalescence submodel. We all use the stochastic technique of LANL for the com-
putation of drop events, but somewhat different numerical techniques for

the solution of the equations.

We believe that this diversity is very healthy. 1t allows for the eva-
luation of different approaches while tested best features are eventually
adopted by all. Moreover the three efforts complement each other very well
through differences in emphasis. We have concentrated on detailed testing of
the physics in our model at the expense of model flexibility. LANL has adopted
the greatest flexibility and its CONCHAS-SPRAY is the most general of the codes
for engine computations. Gosman's model falls in between CONCHAS-SPRAY and our
model.

In summary then, during the 3 years of this ARO Grant we: measured and com-
puted the drop size in the immediate vicinity of the nozzle in Diesel-type
sprays (1'8); measured (Appendix B and Ref. 9) and computed (Appendix C and Ref.
10) the drop velocities in the farfield of non vaporizing Diesel-type sprays;
measured (11) (and are computing) the drop velocities in the farfield of
vaporizing Diesel-type sprays. The overall conclusions are that: the breakup of
full-cone Diesel jets is due primarily to aerodynamic interaction between the
liquid surface and the chamber gas; the initial average size and velocity of the
drops formed by the breakup of the outer surface of the jet can now be estimated
and so can the length of the intact core but with greater uncertainty; after

breakup a steady full-cone spray undergoes a development similar to that of
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incompressible jets; in Diesel engines it is the development region that is of
importance; the major parameter in the difference between full-cone sprays and
incompressible jets is the liquid-to-gas density ratio; in the absence of
'ﬁb vaporization the most advanced of the available spray model reproduce full-cone
s
L: sprays with adequate realism for applications; it is not yet known how vaporiza-
1
féﬁ tion changes the structure of these sprays and if available models adequately
)
B reproduce the changes. We also produced a number of summary papers on the
(L
‘ -
el mechanism of atomization (Appendix A and Refs. 12,13) and on the structure of
"ﬁ Diesel sprays (Appendix D and Ref. 14). One student received his Ph.D. on this
.Eﬂl subject and is now at the Research Laboratories of GM (Dr. K.-J. Wu) and several
1.‘1
it staff members and visitors worked with us and have now moved on to other posi-
:i‘ tions (Drs. R.D. Reitz, D.A. Santavicca, A. Coghe, Y. Onuma, and P. Felton).
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e ABSTRACT

i§ The mechanisms of breakup of liquid jets injected from a single hole
3

‘WY

;kk orifice into a gaseous medium are reviewed. As the jet velocity is

I

increased, or as other operating cakditions are changed appropriately,
four breakup regimes are identified. The four regimes correspond to
di:terent combinations of liquid inertia, surface tension and
asrodynamic forces acting on the jet. They have bsen called the

Rayleigh, the first wind-induced, the second wind-induced and the

atomization regimes. In each of the four regimes, the outcome is also

e influenced by the initial state of the jet. This influence appears to
Qﬂﬁ grow in importance with increasing jet velocity. The existence of the
Ko
154,
;”3 regimes is consistent with a stability analysis of the liquid surface.

It appears that the stability analysis can account also for the

'

Xy

influence of the initial state of the jet but little work has been done

F e
»
. X

in this area and the breakup process at high jet velocities is

understood more qualitatively than gquantitatively at present.
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1. INTRODUCTION

The mechanisms of jet breakup discussed here result from the steady
injection of a liguid through a single hole nozzle into a quiescent gas.
The complexity of the breakup process is due to the unusually large
number of parameters which influence it, including the details of the
design of the nozzle, the jet's velocity and turbulence, and the
physical and thermodynamic states of both liquid and gas. In this work
we discuss a framework by means of which some of the underlying
mechanisms of breakup can be organized and, eventually, be better
understood.

The approach followed is to divide the jet breakup phenomena of interest
into various breakup regimes. These regimes reflect differences in the
appearance of the jet as the coperating conditions are changed. We then
attempt to relate these regimes to limiting cases of a stability
analysis of liquid jets. The analysis considers the growth of initial
perturbations of the liquid surface and includes the effects of liquid
inertia, surface tension, viscous and aerodynamic forces on the jet. The
theory is found to offer a reasonably complete description of the
breakup mechanisms of low speed jets. For high speed liquid jets
however, the initial state of the jet appears to be progressively more
important and less understood. We will summarize the results of recent
research aimed at closing this gap.

It should be pointed out that we consider only fluid-dynamic
instabilities and that there are other causes of breakup such as
superheating!, electrostatic charge?, acoustical excitation?, and
chemical reactions. Even in the field of fluid-dynamic instabilities
there are difficulties; many parameters influence the outcome; the
magnitude of these parameters vary over broad ranges; there are no
generally accepted theories, regimes, or even terminology. Thus even
comparisons of results and statements of various authors are
complicated. But when conditions are properly identified and
nomenclature difficulties are overcome, the framework to be presented in
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' A this work is found to be compatible with much of the published work.
Y
R
"'f
‘:& 1.1 The Jet Breakup Regimes )
o
A0 1f all other parameters are kept constant, the jet velocity becomes a |
o convenient quantity to introduce various regimes. :
3 =
£ Grant and Middleman¢ reviewed the behaviour of low speed jets and
B reported the results in the form of a breakup curve (Fig. 1) which
N describes the unbroken length of the jet, L,, as a function of the jet
f velocity, U. Once a jet is formed (point C, Pig. 1) the jet breakup b
2 length at first increases linearly with increasing jet velocity.
e Thereafter it reaches a maximum (point E) and then decreases. These ‘
&N first two breakup regimes are reasonably well understood, as will be ‘
B¢ seen below, and here are called the Rayleigh (CD) and first wind-induced |
1 breakup (EF) regimes. A feature of breakup in these two regimes is that :
" drops are pinched off from the end the jet and their sizes are !
Y comparable to that of the jet (see also Figs. 5a and 5b).
b
L) For higher velocity jets beyond the point F there still remains some |
' confusion over the true shape of the breakup curve. Haenlein® reported :
o that the breakup length remains constant, or decreases slightly, with j
-'." increasing velocity (curve FG, Fig. 1) and then it abruptly reduces to ,
‘%’ near zero beyond point G. This suggests the existence of at least two
J}'L more breakup regimes, each causing new features in the breakup curve. »
‘__- However, McCarthy and Malloy‘ and Grant and Middleman¢ report that the
" breakup length initially increases (curve FH). (
2 5
{' It should be noted that the definition and measurement of the intact ’
length becomes increasingly difficult as U is increased, as pointed out
§ also by Grant and Middleman*. At sufficiently high velocities, the jet
.o surface is disrupted prior to the breakup of the jet core and the use of
o only one breakup length is no longer a complete measure of the jet
A
) : 2 .
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stability. Thus we distinguish between the intact-surface length, L,,
and the intact-core length, L,. In the Rayleigh and first wind-induced
regimes the jet breaks up simultaneously over the entire cross-section
and the two lengths coincide. In the second wind-induced and atomization
regimes which will be described next, the disruption starts at the jet
surface and eventually reaches the jet axis so that at least two lengths
are necessary to identify the gross features of the breakup.

We call the atomization regime that regime in which the intact-surface
length is zero (but the intact~core length is not necessarily zero) so
that L, versus U follows the trend suggested by Haenlein®, viz. the
breakup length goes to zero beyond the point G (B) in Fig. 1. Here the
jet surface appears to break up immediately at the nozzle exit and drops
are formed that are much smaller than the nozzle diameter (see Fig. 5d).
Although we find this definition of the atomization regime unequivocal
and useful, we must point out that the term atomization has also been
used by other authors in a variety of different contexts. This regime
is of interest in many fuel injection applications.

For breakup in the second wind-induced regime (curve FG or FH, Pig. 1),
both the intact-surface length and the intact-core length are finite and
drops are formed with sizes also much smaller than the nozzle diameter
(see Pig. 5¢).

To introduce the four regimes we have used the injection velocity as a
parameter and have kept all other parameters constant. Actually
dimensionless numbers separate the various regimes as will be discussed
in the following sections. Indeed the high velocity jets in jet cutting
applications, for example, exhibit long intact-surface lengths even
though they are faster than atomizing fuel jets, but the two families of
jets differ in nozzle design, gas density, surface tension and liquid
viscosity.

Attempts have been made by various authors to offer criteria with which
to demarcate breakup regimes. For example, Miesse’ correlated breakup
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Q regime data and presented the results in a form suggested by Ohnesorge’
& as shown in Pig. 2. The boundaries of the regimes are represented by

: oblique 'straight lines on a graph of 1ln 2 (a function of the physical
properties of the liquid and the nozzle diameter alone) versus 1ln Re,.
Unfortunately, this method of correlation does not include the effect of
the initial state of the jet (that is influenced, for example, by the
?ozzle design) nor the effect of the ambient gas density (pressure),
which according to Torda®’ modifies the graph as shown by the dashed
lines. These modified boundary curves show, for example, that
atomization can be achieved at lower injection velocities by injecting
into a compressed gas. |

The effect of ambient gas density on jet breakup regimes was discussed '
by Ranz:*®* who argued that the Weber number We, should be a controlling i
parameter. He offered the criterion We, > 13 for the onset of
atomization. However, it should be noted again that his definition of l
the term atomization differs from ours ~ he does not refer to the state

of the jet itself but instead refers to the process of disintegration of :
already formed droplets during their flight within a spray. He argued |
that the criteria for the formation and the subsequent further breakup ‘
of the droplets should be the same since when the inertial stresses ;
developed by the surrounding gas exceed the surface tension stresses :
opposing the deformation sufficiently, the liquid drop (or ligament in

the formation process) will subdivide into smaller units. But a Weber

number correlation by itself is still incomplete since now the liquid

viscosity is not accounted for.

This latter objection can be removed (at least conceptually) by
combining Fig. 2 with a gas density parameter as is shown qualitatively
in Fig. 3, taken from Reitz?, Still, different sets of surfaces should
be given in Pig. 3 to account for the effects of different initial
states of the jet. Thus completely satisfactory correlations for the
regime boundaries are not yet available. Indeed many authors do not
even distinguish between the two wind-induced regimes as can be seen in
Fig. 2. Finally, as previously stated, we feel that part of the
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difficulty in interpreting published results is due to a lack of agreed

upon terminology in the field, and insufficient characterization of the
injection system and the nozzle geometry.
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2. LINEAR STABILITY ANALYSIS

We consider a cylindrical ligquid jet issuing from a circular orifice
into a stationary incompressible gas. The stability of the liquid
surface to perturbations is examined using a first order linear theory
which ultimately leads to a dispersion equation, Eq. (5) below. This
equation relates the growth rate, w, of an initial perturbation of
infinitesimal amplitude, n,, to its wavelength A (wavenumber k=2x/1).
The relationship also includes the physical and dynamical parameters of
the liquid jet and the surrounding gas. The present treatment will be
seen (in Section 3) to unify the results of Levich:?, Stirling and
Sleicher:? and other authors who have treated individual jet breakup
regimes.

The column of liquid is assumed to be infinite in the axial direction
and a cylindrical polar coordinate system is used which moves with the

jet velocity, U. Imposed on the initially steady motion is an
infinitesimal axisymmetric surface displacement, one Fourier component
of which, has the form
n = R(n eikz#ut)
[ ]

The linearized hydrodynamical equations are

ou 129

3z *r etV =0

1
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v 19 v 2,19 ‘
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[ * ”l{az' * a:‘: a:rv*’}

where u,, v, and p, are small axisymmetric velocities and pressure.
With the assumption that n<<a, the kinematic, tangential stress and
normal stress equations are to first order
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v, = 32
du ov
gL .- &
or = 0z (2)
v,
Py *+ 24, 8: - f,(fl a' ) p; =0 .

The inertial effects of the gas enter through the gas pressure p,. This
is found from the linearized inviscid equations of motion for the gas
2, 1

oz T ar(rv,) =0

8y, + Wy i

at + U 5t az dr p,02 (3)
ov P

——l B = o —El

ot ruo G az pjor

where the mean gas motion above the liquid surface is given by U(r).
The boundary conditions are

2n 21
vy =t v U at ra=a

U, Va, P, # 0 as r e

Equations (1) are solved by introducing a stream function y,, and a
velocity potential ¢, and by seeking wave solutions of the form

ikz+ut and ¥, = ¥, (r) eikz+wt.

¢, = ¢;(r) e
Solutions free from singularities on the axis r=0 are found to be ¢, =
C, I,(kr) and ¥, = C, rI,(«£r), vhere C, and C, are arbitrary constants,
and the liquid pressure can then be found from the relation
px.-pla“/ato

For the gas flow, Eqs. (3) can be simplified by defining a stream
function y,=(U-iw/k)nf(r). This leads to an Orr-Sommerfeld equation

af 2U'r da(f/r)

ar: * Giox~ Y ar - kit =0

with f(r=a) = 1, and f(r+=) = 0, The equation for the gas pressure is

P, = ’Paﬂ(u'ig )2 (g% - %) . (¢)
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Here the arbitrary constant of integration has been set equal to zero.
If the gas velocity profile U(r) is known, the gas pressure at the jet
surface can be determined from E£q. (4) for use in Eg. (2). For the
special case of slip at the gas-liguid interface, U(r)=U=constant, and
the gas surface pressure is

Ky (ka)
K, (ka} :

-l J\,‘ ,_.“" ‘; !'J;,J;JM

-
ot}

Pas ®= =P, (u’ig)’kn

Finally, substituting these relationships into Egs. (2) yields

J(ka) | 2kt 1 (ka) 1,°(4a)
I, (ka) ks 1, (a) 1, 04)

R

W o+ 20 k'u[I

ok - ua 1, (ka)
= oa(l - kia®) ‘p ’ xt’ T, (ka) o
+ (U dw/k)2k? (_‘a + ki) I,(ka)K, (ka)

which is the governing dispersion relationship. Equation (5a) may tor
brevity be written in nondimensional form as

p2 + 2 Z k?a?F; f = ka(l - k?a?) F, + We, k*a?F, (5b) !

where fswy/p,a3/0, 2=u,/Vp,od and We,=p,U3d/0 and the F's are
dimensionless ratios of Bessel functions and wave numbers.
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3. BREAKUP REGIMES AND THE DISPERSION EQUATION

2 In this Section we attempt to relate the mechanisms of breakup in the

four jet breakup regimes to limiting cases of the linear stability
analysis of Section 2. This theory offers a unified approach for the
organization of the jet breakup phenomena but is not complete mostly
because it does not account explicitly for different initial states of
the jet.

3.1 Rayleigh Breakup Regime

Rayleigh®+¢ made substantial contributions to the understanding of the
stability of low speed jets. He obtained a dispersion equation for the
growth of axisymmetric surface disturbances by equating the potential
and kinetic energies of an inviscid jet. With the hypothesis that that
disturbance with the maximum growth rate would lead to the destruction
of the jet, he also obtained an expression for the droplet size,
assuming that it would be of the order of the wavelength of this
disturbance.

For the special case 2 = 0 and We, = 0 (inviscid liquid jet at low
velocity) the dispersion Equation (5a) (cf. also Eq. [Sb]) becomes

. ok _ 1, {xa}
w? o (1 - k? a?) T.Tka (6)

which is the same as Rayleigh's result. This equation predicts that the
jet surface is unstable for all wavenumbers with ka<l and the
corresponding wavegrowth curve is given in Pig. 4.

This wavegrowth curve can be found experimentally by vibrating low speed
jets at various frequencies and by measuring the growth rate of the
axisymmetric surface oscillations. The corresponding measurements of
Donnely and Glaberson!® given in Pig. 4 show excellent agreament with
the first order theory. Differentiating Eq. (6) shows that the maximum
growth rate is




oy & 0.3¢ (-:;7) A at kx & 2x/9.02a ‘

and if the initial disturbance 5, ©of the most unstible wave grows
exponentially to a magnitude ‘a’ in time T, it follows that the breakup
length of the jet (the position of the point of droplet formation) then
on average will be

L, =UT =U 1ln (a/n,) / “n ) &)

This linear dependence of L, on U was seen in Fig. 1 for low velocity
jets in the Rayleigh breakup regime. i

The parameter ln (a/n,) has been determined experimentally. It lies in :
the range 11-16 ¢ but it has been found to be weakly related to the 5
Ohnesorge number Z 3'. The theoretical influence of the liquid |
viscosity is found by retaining the term involving Z in Eq. (5b). For

large Z (high liquid viscosity) the maximum wavegrowth rate is

© 1 /31

o =
w =33 (5as) T+3z Atk

. -
ay(2+2)

where ka has been assumed to be small and the Bessel functions and their
arguments have been replaced by their asymptotic values. This
relationship was first obtained by Weberi*, His analysis sﬁowed that the
effect of the increased liquid wviscosity is to move the most unstable
wave tO longer wavelengths without altering the value of the stability
boundary, ka=1l. The jet breakup agency remains the destabilizing
combination of surface tension and inertia forces on the jet.

The above analysis predicts that the jet breakup yields droplets many
nozzle diameters downstream of the nozzle. The drop diameters are larger
than that of the jet and a photograph typical of jet breakup in this
regime is shown in Fig. Sa, taken from Lee and Spencer:’,

To estimate the droplet size, Rayleigh assumed that all of the liquid
enclosed within the wave forms the volume of the newly created drop when

10
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the surface wave amplitude equals the jet radius. However, as pointed
out by Wang?* when the wave amplitude becomes comparable to the jet
radius, the surface deformation is observed to be non-sinusoidal due to
nonlinear effects. Also, mass is only conserved to first order in the
first order stability analysis. Yuen:! and Nayfey?: retained higher
order terms in their jet stability analysis and Rutland and Jameson??
demonstrated that this improved theory also predicts the existence of
satellite droplets formed between the primary drops. Interestingly,
LaFrance?¢ showed that the drop sizes are not influenced by the
magnitude of the initial disturbances to the jet.

3.2 Pirst Wind-Induced Breakup Regime

The second term on the right hand side of Eqs., (5) becomes important
when the jet velocity (for example) is increased. In this case the
inertial effects of the surrounding gas can no longer be neglected and
the Weber number We, becomes a controlling parameter in the dispersion
equation. Weber:® showed that the effect of the environment on the jet
is to enhance the growth rate of disturbances, leading to earlier
breakup of the jet. He obtained the result

w! + 3p,k0 = -2—:-‘—”(1 - k?a?) k2a?

£z Ulk?a? K, (ka)
p, 2a? K, (ka)

(8)
which can also be found from Eqs. (5) in the limit ka < 1.

Computations of the maximum wave growth rate now show that the jet
breakup length equation, Eg. (7), becomes a nonlinear formula which must
be solved numerically. It indeed predicts that the breakup length L,
decreases with increasing jet velocity (Fig. 1, curve EF). However the
predicted value of the maximum in the breakup curve (Fig. 1, point E)
fails to agree with experimental results, since Weber's theory is found

to overestimate the aerodynamic effect of the gas. This has led many
investigators to attempt modifications to Eq. (8).

Penn and Middleman?® argued that the viscosity of the gas should also be
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considered in a more complete analysis. The effect of the gas viscosity
enters through the normal and tangential stress boundary conditions Egs.
(2) and was neglected by Weber (also in the linear stability analysis of
Section 2). The inviscid gas approximation implies slip at the gas

+iquid interface.

Benjamin?¢ showed that if the gas boundary layer is thin compared to the
surface wave wavelength (high gas Reynolds numbers) then the energy
transmitted between the gas and the liquid by normal stresses
(aerodynamic effect) is large compared to that transmitted by shear
stresses (viscous effect) , and their ratio is independent of the
Reynolds number. However, for finite Reynolds numbers the magnitude of
the fluctuating pressure ‘component p, which is in phase with the wave
elevation (the part responsible for energy transfer) becomes reduced.
Based on these results, Sterling and Sleicher:? introduced an
attenuation coefficient C, multiplying p, with C = l-h(ka,Re; ). The
function, h, increases as k increases and decreases to zero as the
Reynolds number becomes large. They found that C could be replaced by a
constant, noticing that the wavenumber and the Reynolds number move in
opposite directions as the aerodynamic effects increase.

This modification of Weber's theory with C = 0.175 multipying the second
term on the right hand side of Eqs. (5) agrees well with experimental
results. The numerical results of Sterling and Sleicher:? then show
that the point E in Pig. 1 is reached when We, = 1.2 + 3,412°-°.

In this regime the jet breakup still occurs many nozzle diameters
downstream of the nozzle and produces droplets whose diameters are still
comparable to that of the jet as was seen in Fig. 5a for jets in the
Rayleigh breakup regime (see Fig. 5b). The breakup is still due to the
destabilizing influence of surface tension, but it is now augmented by
the aerodynamic interaction between the liquid and gas.

Sterling and Sleicher:’ also pointed out that relaxation of the jet's
exit velocity profile to a uniform flow beyond the nozzle can influence
the jet .reakup process. In their analysis (which was quoted
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above) they considered the case where lt/L is small (1r is the jet
profile relaxation length). Por large lr/L they suggest that jet
instability could be enhanced by velocity profile rearrangement effects
but they offered no details of the mechanism by which this would occur.
The profile relaxation phenomenon was also alluded to by Grant and
Middleman¢ who found a dependence of L; on the nozzle passage length. In
particular, nozzles of short length produced more stable jets than those
produced from long tubes. They argued that this implies a coupling
betveen the velocity profile and the mechanism of instability in this
breakup regime. Parenthetically, their experiments also showed that the
breakup length in the Rayleigh regime (Section 3.1) is not influenced by
nozzle design details.

Another example of the influence of the initial state of the jet is
discussed by Phinney?’ who proposed that liquid turbulence also enhances
the jet breakup process. He reasoned that the effect of the jet
turbulence is to increase the initial disturbance level n,. He noted
that, even in the abscence of aerodynamic effects, the jet breakup
length L; is reduced once a critical value of the jet Reynolds number is
reached. Furthermore, this critical Reynolds number is of the same '

order as that for transition to turbulence in the nozzle. However the |
influence of jet turbulence on the magnitude of the initial disturbhance
level is still quantitatively unclear.

3.3 Second Wind-Induced Breakup Regime

With further increases in We, , Eq. (8) predicts that the maximum wave
growth rate occurs at progressively larger wavenumbers (shorter
wavelengths). An inspection of Eq. (8) (or Egs. [5]), shows that the
first term on the right hand side changes sign at ka=]l, after which the
surface tension forces oppose the breakup process. Jet breakup is now
due to the unstable growth of short wavelength surface waves (ka>l)
which are induced by the relative motion between the jet and the ambient
gas. An analysis of Eq. (8) shows that the maximum wave growth rate
occurs at ka=l when We,al2 for inviscid jets. This estimate was made

13




li using the numerical results of Sterling and Sleicher!?. The estimate
»?i also agrees well with the experimentally obtained criterion of Ranzie,
¢ We,=13, for the onset of short wavelength waves.

An expression for the growth rate of short wavelength surface waves was

 § presented by Levich:? and Levich and Krylov?*, who examined Egs. (5) in
;? the limit ka >> 1 and deduced, neglecting the liquid viscosity, that

t w = (p,k3U2 - ok3)/p, . (9)
“n

L0

[ This result implies the existence of unstable surface waves when k <

aﬁ p3U?/0. The maximum growth rate is given by '

U gyl
“n a 0.4 ° (P; ) .

L™

ESJ Equation (9) shows that the dispersion relation Eg. (5) becomes

* independent of the jet radius in this limit. Consequently, for ka >> 1

;{ jet curvature effects are unimportant. Similarly, the Weber number We,
2 can no longer appear as a controlling parameter.

o

’ The influence of the liquid viscosity is seen by retaining the second

}i term on the left hand side of Eqs. (5). In the limit ka # o this reduces

A5 (w + 20,k3)? + ok?/p, - 4», 2K/ (K? + w/v,)

D + (0 + 1Uk)?p,/p, = 0 .

B

This result is identical to that of Taylor?’' who performed an analysis
of the unstable growth of 2-dimensional planar sucrface waves due to the

xl.rr&w

X

P

A relative motion between a liquid and a gas. He considered the limit ka ,

;ﬁ >> 1 and, assuming p, << p, he found that the wave growth rate is f

.‘:- 1/13 '

= /U= 2 (B 3 xq(ryx) . :

- a2 ,

AN i

! The function g is a correction to the result of Levich!? which now i
accounts for the effect of the liquid viscosity. It is shown as a E
function of the new parameter
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and the nondimensional wavelength x = p,U2/o0k from Taylor's work in Pig.
6. The figure shows that the disturbance growth :afe increases with
increasing I', and that the maximum growth rate occurs at larger
wavenumbers (shorter wavelengths) as I' increases.

Taylor?® also estimated the intact-core length, L,, by computing the
rate at which droplets remove mass from the liquid core. Here the
droplet sizes were assumed to be proportional to the unstable surface
wave wavelengths. This analysis gives (see also Reitz and Bracco?*)

A ' 4 () (102)
3

where B, is a constant of order unity. The function £(I') cotrresponds to
the maximum wavegrowth rates of Pig. 6, and it is shown in Fig. 7. The
intact-surface length L, can be estimated using similar arguments to
those which led to the development of Eq. (7) (where the jet radius ‘a’
is replaced by some characteristic wave height at breakup, say). In
this case we find that

L, =B, L, / We, (10b)

where B, is another constant which would be dependent weakly
(logarithmically) on drop size.

Equation (10a) predicts that the intact-core breakup length L, remains
constant with increasing jet velocity until the parameter I' becomes
small (i.e. for high velocity jets). L, then decreases with increasing
jet velocity. The intact-surface length L, from Eq. (10b) is predicted
to decrease as the inverse square of the velocity and then to decrease
even faster when I' becomes small. This prediction is not inconsistent
with the form of breakup curve of Haelein® for jets in the second
wind-induced regime and, possibly, even in the atomization regime once
L, becomes of the order of the wavelength of the surface waves.
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:VJ . A photograph typical of jet breakup in this regime is shown in Pig. 5¢
]

A from Reitz)!:. The photograph shows that the jet breakup starts some

; distance downstrean of the nozzle exit and yields droplets whose average

?’ diameters are much less than the jet diameter. Droplet formation results

';ﬁ from the unstable growth of short wavelength surface waves on the jet.

Iy This wave growth is ‘aused by the relative motion between the jet and

f' the ambient gas, and surface tension forces oppose the wave growth

¥4 process.

)

L

‘o 3.4 Atomization Regime

éﬁ In this regime the breakup appears to commence at the nozzle exit (see

%ﬂ Pig. 5d). The spray takes the form of a cone with its vertex within the

% nozzle. Various authors have suggested possible jet breakup agencies
for jets in the atomization regime and some of these are considered

;g below, but a complete and tested theory is not yet available.

&

3 Experiments were made to study atomization in Reitz and Bracco??’?? and

“w Wu et al.?’'??, The range of conditions of these studies has been

extensive and includes the operating conditions nf fuel injection
systems in Diesel and stratified charge internal combustion engines.
The experiments were made under steady conditions with injections into a

s

») semi-infinite gas. The test conditions include: Constant liquid

.ja injection pressures in the ranges 3.4-17.0 MPa3: and 10.8-90.5 MPa’?;

: : Constant gas pressures in the range 0.1-4.1 MPa with air, nitrogen,

' helium and xenon (different molecular weights to isoclate effects of gas

iw density and pressure??); Water and water + glycerol injections (10?3

- range in liquid viscosity’!). Hexane, water and tetradecane (factor of i
é; 10 in viscosity, 4 in surface tension, 1.5 in liquid density’’. Pentane, '

hexane and ethanol (factor of 3 surface tension, 1.5 liquid density?; 21 f

9i nozzles: sharp edge inlet tube nozzles (length to diameter ratio range

' 2 0.5-85.0 (diameter 0.35 mm), rounded inlet’: and rounded exit nozzles a
[ and cavitation free nozzles, and a factor of 2.5 in nozzle exit ,
04 diameter??’?; Liquid temperature: room temperature3!’'?3: 100-200 C:.
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v Certain trends were found from photographs of jet breakup in the

ﬁﬁ experiments. For example, the spray angle (divergence angle of the jet)

ﬁ? was found to increase with increasing (isothermal) gas compression.

gg Moreover, it was established that this is due to increases in the gas
density, not pressure’?., The spray angle was also found to increase with

+ decreasing liquid viscosity.

%

.;' Another treﬂd concerns the boundary between the atomization and the

. second wind-induced regimes. It was found that the breakup starts

- progressively closer to the nozzle exit as the gas density is increased,

135 until it reaches the exit with no evidence of an abrupt change. This

hf trend is also shown in Fig. 8 in which the measured spray angle is
plotted against the gas-liquid density ratio for sharp edge inlet

A nozzles with a length to diameter ratio of 4.0. The solid data points

ﬁﬁ are in the second wind-induced regime - jets intact before diverging.

;&i The open points show atomizing jets - divergence begins at the nozzle
exit. It was also found that atomization is reached once the liquid

- viscosity is decreased below a certain level, again with no abrupt

ﬁ%} 4 change in the appearance of the jet.

h.
Other results were: The spray angle decreases with increased nozzle

{ﬁ passage length for nozzle length to diameters greater than 10 or 20.

IKS (For -shorter nozzles there is more scatter in the results and the trends

by are not yet fully established, Wu et al.33); For the same length,

;. rounded inlet nozzles produce less divergent jets than sharp edge inlet

W nozzles; Atomization commences at different gas density and liquid

?; viscosity levels as the nozzle design is changed.

; ‘ With these results it is possible to examine previously proposed

%i; theories for atomization in detail. For example, DeJuhasz®¢ and

:;, Schwietzer?® proposed that liquid turbulence causes atomization. But if

'ig pipe turbulence were the only mechanism, turbulent jets (from the

f* nozzles with large length to diameter ratios?*s) would have been the most

Ty unstable flows - contrary to the experiments. Similarly, cavitation

'ﬁz phencmena were proposed Bergwerk?’ to lead to atomization. But jets were
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found to atomize even when the cavitation free nozzles of Wu et al.??
were used.

In fact, an evaluation of other proposed atomization mechanisms has
revealed that none of the theories taken alone, is able to explain the

Yy A

et

v -
A
~

results fully?:. These theories include proposals that atomization is
caused by: Aerocdynamic surface wave growth?® ‘3 - the results would be
independent of the nozzle geometry; Rearrangement of the jet's velocity
profile‘® - the high viscosity jets would be the most unstable; Liquid
supply pressure oscillations¢? - atomization would not have occurred
since the pressure was constant in the experiments; and Wall boundary
layer velocity profile relaxation¢? - atomization would have been

h!

independent of the gas density; all of these contrary to the
experiments.

However, the aerodynamic surface wave growth theory was found to predict d
many of the trends in tests with a given nozzle. Thus it is useful to
consider its predictions in more detail. 1In this case, the appropriate
limit of the dispersion Equation (5) is ka » =, as in the second
wind-induced regime above. Ranz** argued that the spreading angle of
the atomizing jet could be predicted by combining the radial velocity of
the fastest growing of the unstable surface waves with the axial
injection velocity:

/

27w

tan (8/2) = ‘ﬁ’ - = 4% (py/0,) £(T)/A (11)

where the proportionality constant A is obtained from experiment.

In Eq. (l1) the spray angle increases with increasing gas density and
decreases with increasing liquid viscosity and increasing velocity.
This is consistent with tests with a given nozzle. Notice also from
Pig. 7 that for I' > 1 the function £(I') becomes asymptotically equal to
v3/6. Equation (11) then predicts that the spray angle depends only on
the gas-ligquid density ratio - which is surprising considering the many
ﬁiramat.:s that could effect it. This behaviour is also generally borne
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out by the measurements with a given nozzle.

Ranz¢?’ determined that A a 18 or 20, but he pointed out that the data of
Schweitzer+¢ give A = 3. Results given in Reitz and Bracco?’! indicate
that the predicted variation of the spray angle with gas density is
followed if A has a different value for each different nozzle. Also
other results show that agreement is found with respect to liquid
viscosity variations by using (for each nozzle) the same value of A as
that obtained from the gas density best fit. Pigure 9 shows spray angle
measurements and the predictions of Eq. (1l) with respect to gas
density and jet velocity variations. Again the measurements follow the
predicted trend, but the results do exhibit a mild opposite trend at low
gas densities, indicating that the theory only complies with the most
pronounced, and practically important, of the measured trends.

. There is additional evidence in support of the aerodynamic theory. For
example, the data of Hiroyasu et al.¢' agree with the prediction of the
intact-core length of Eq. (10a) with respect to injection velocity and
gas density changes. Their experiments were based on measurements of
electrical resistance between the nozzle and a screen that could be
moved axially within the spray; thus detecting any continuous liquid

tﬁ; connection between the nozzle and the screen. However, a connected
;§$fj ligament could give the same signal as a solid liquid core free of gas.
o Consequently there is still some uncertainty about the structure of the
;)‘ core.

fv;é

';’5 Drop sizes have been measured at the edge of the spray in the vicinity
;LE; of the nozzle exit*¢. In the surface wave growth theory the drop size
v would be related to the wavelength of the unstable surface waves i.e.
-.j‘.' £x ¢ 27ox/p,U? (12)
S

‘3ﬁ where c is a constant of order unity. The predictions of Eq. (12) with
"- regard to ligquid properties, jet velocity and lack of sensitivity to
:%ﬁ nozzle design are found to be in agreement with experiment. However a
'gﬁs discrepancy has been found with the dependence on gas density but it
S
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appesars that a reasonable explanation for this disagreement exists¢’.

Based on the definition that atomization occurs when the intact surface
length approaches zero, Eq. (10a) can be used to predict that
atomization occurs if:

I/l
(py/pa) " <K forT > 1

and (Hﬁi)'/'<x for T <1 (13)
3 3

where the constant, K, depends on the nozzle geonmetry. For the nozzles
in Pig. 8 (length to diameter ratio 4), K is found empirically to be
egual to 5.2,

The stability analysis does not include the details of the flow field
within the nozzle. This shortcoming was also mentioned for the first
and second wind-induced breakup regimes in Sections 3.2 and 3.3. Thus,
it appears that the stability analysis can explain many of the
experimental results in the atomization regime (and also in the second
wind-induced regime) if it is supplementec by additional information
pertaining to the initial state of the jet since such information is not
included explicitly in the theory. In particular, the nozzle geometry
obviously effects the initial state of the jet. The simplest way of
accounting for the initial state ¢of the jet is through the magnitude of
the initial perturbation n, which could have a different valuve for
different nozzle geometries, for example. However, even if this is
eventually found to be a sufficient modification, the magnitude of the
perturbation is known at best only empirically. All that can be said at
present is that n, depends in some complex manner on the details of the
initial jet flowfield that in turn is influenced by the nozzle geometry
and possibly by other parameters, such as the flowfield just upstream of

the nozzle.

However, a physical picture of the atomization process can now be
proposed which is consistent with the available data. The surface of
the liquid jet emerges from the nozzle already perturbed by events that

20




occur within the nozzle itself and are affected by its geometry. The
perturbations are rapidly and selectively amplified by aerodynamic
interaction with the gas until the outer surface of the jet breaks into
drops. The size of the drops and the intact-surface length is much
smaller than the diameter of the nozzle. The depth from the surface of
the jet to which the above drop formation mechanism would apply is not
known. But the core eventually breaks up too since only isolated drops
are found far downstream.

Other aspects of atomization still remain unresolved besides the
influence of the nozzle. Not predicted by the stability theory, and
therefore unknown, are the size and size distribution of the unstable
waves at the moment of breakup and also the time between successive
ruptures. Away from the nozzle exit, as the generating surface
regresses towards the axis of the jet, there are questions as to what
gas velocities are seen by the liquid surface. The velocity of the
entrained gas certainly approaches that of the liquid surface. Thus the
breakup process should be coupled with the two-phase flow field that
exists between the presumed intact-core and the unperturbed outer gas.
As the relative velocity between the liquid and gas decreases inside the
jet, larger drops or ligaments or blobs should be formed; just as larger
drops are found when the injection velocity is decreased, as in going
from Pig. 54 to Pig. Sa.

An additional factor to be considered is coalescence of the liquid
fragments which can be expected where locally large values of the liquid
volume fraction exist. In fact, the net outcome of atomization may be
the result of a small difference between large droplet formation and
coalescence rates*!. Thus it is clear that Egs. (10) to (1l3) may
provide some information about the outcome of the breakup, but in no way
do they give all that is necessary.
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NOMENCLATURE

liquid jet or nozzle exit radius
nozzle coﬂstant Eg. (11)
breakup length constants EqQs. (10)
drop size constant Eq. (12)
constants of integration in stability analysis
attenuation coefficient
nozzle exit diameter = 2a
Orr-Sommerfeld parameter, Eq. (4)

maximum growth rate parameter, Eg. (10) and Fig. 7

F,,:,; dimensionless ratios of Bessel functions in Eq. (5b)

[

n =% X -

~

L,

L,

Re

Taylors wave growth function Fig. 6
V-1

nth order modified Bessel function of the first kind
wave number 2/A

nth order modified Bessel function of the second kind
nozzle constant Eq. (13)

wave number y(k2+w/»,)

velocity profile relaxation length
intact-surface breakup length

intact-core breakup length
pressure

radial coordinate, drop radius
real part of a complex quantity
Reynolds number pUd/u

time
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&
T
- T jet breakup time
is: u axial velocity component
‘.\:\-
}:: U jet exit velocity (averaged over jet cross-section)
Pin"
) v radial velocity component
o We Weber number pU3d/o
n ‘h’
iiﬁ x dimensionless wave length p,U?/ok
DLt
¢ z axial coordinate
‘;é 4 Ohnesorge number u,/v(p,od)
o
b B dimensionless wavegrowth wy(p,a®/o)
ot r Taylor parameter =p,02/(pyu,2U?)
i& Ap effective injection pressure P,-P,
v
! n surface wave amplitude
T 6 jet divergence or spray angle
Z;; A wave length
0 u kinematic viscosity
7?; v dynamic viscosity = u/p
.-
3l P fluid density
N
:) o surface tension coefficient
4N ¢ velocity potential
gy " stream function
oo
e © wave growth rate =R(w)
A
o~
:p Subscripts
-
»53 1,L liquid phase
¥ 2,9 gas phase
:Sf ) maximum value
' '\
o
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FIGURES

1. Jet surface breakup length L, as a function of jet velocity: ABC
Drip flow; CD Rayleigh breakup regime; EF Pirst wind-induced breakup
regime; FG (FH) Second wind-induced breakup regime; Beyond G (H)
Atomization regime.

2. Jet breakup regime boundaries of Miesse’, Ohnesorge® and Torda’.

3. Schematic chart of influence of gas density on breakup regime
boundaries, Reitz!!,

¢. Wave growth rate with wave number for jets in Rayleigh breakup
regime. Line: theory Eg. (6). Symbols: measured wave growth rates of
Donnely and Glaberson:is,

5. Examples of jets in the four breakup regimes 33°':*, a,) Jet breakup
in the Rayleigh regime. Droplet sizes of the order of the jet diameter
and breakup occurs many nozzle diameters downstream of the nozzle. b.)
Jet breakup in the first wind-induced regime. Droplet sizes are still
of the order of the jet diameter and breakup occurs many nozzle
diameters downstream of the nozzle. c.) Jet breakup in the second
wind-induced regime. Droplet sizes much smaller than the jet diameter
and the breakup starts some distance downstream of the nozzle. d.) Jet
breakup in the atomization regime. Droplet sizes much smaller than the
jet diameter and the breakup starts at the nozzle exit.

6. Theoretical wave growth rate as a function of dimensionless wave
length parameter, x= p,U2/ck for jets in the second wind-induced breakup
regime, Taylor??’,

7. Dependence of the maximum growth rates in Fig. 6 on Taylor's
parameter I' = (p,/p,) {Re,/We,}2.

L

%3 8. Measured spray angle versus gas-liquid density ratio for nozzle
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length to diameter ratio of ¢ ::°'23, Nozzle diameter 0.34 mm. Nozzle
AP=10.0-14.0 MPa. Liquid: water. Gas: nitrogen. Solid symbols: jets
intact before diverging (second wind-induced regime). Open symbols: jet
divergence starts at the nozzle exit (atomization regime). Partially
s0lid symbols: Marginal breakup at the nozzle exit. Line:
theory prediction Eg. (1ll) with A = 4.0.

aerodynamic

9. Measured spray angle versus liquid jet velocity for different
gas-liquid density ratios??. Liquid: n-hexane. Gas: nitrogen. Straight
tube nozzle length to diameter ratio 4. Open symbols: data at AP = 15.3,
38.0, 64.9 and 91.8 MPa (U = 1,5, 2.3, 3.0 and 3.6x10¢ cm/s,
respectively). Closed symbols: repeated measurements at AP=15.3 MPa made
after the high injection pressure (AP=91.8 MPa) runs.
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K.-J. Wu,* D. A. Santavicca,t and F. V. Braccot
Princeron University, Princeton, New Jersey
and
A. Coghe$§

Centro Ricerche Propulsione e Energetica CNR, Milan, Italy

:, Axial and radia) components of the drop velocity were measured by laser Doppler velocimetry (LDV) within
i n-hexane-into-nitrogen sprays from single-hole cylindrical nozzles st room temperature. The gas-to-liquid

density ratio, the injection velocity, snd the nozzle length and diametes were varied. The LDV system Included
i an argon-ion laser, dual beam LDV optics with frequency shifting and 90-deg collection, a counter processor,
i and minicomputer data acquisition. The total erro, in the measured mean and fluctuation drop velocities was
less than 10% from the centerline to the hsif-radius (half-the-width at haif-the-depth) and larger and more
i uncertain beyond it. Velocity bias was the most difficult error (o quantify. It is found that beyond 300 nozzle
i diameters from the nozzle so much ambient gas has been entrained by (he drops that the subsequent structure of
H the spray is dominated by the entrained ambient gas, and the fully developed incompressible jet structure and
\ drop-gas equilibrium are being approached. This conclusion is supported by all the measured drop velocity
: parameters: jet half radius, centerline velocity decay, axial mean velocity distribution, sxisl and radial velocity
, fluctuation distributions, and independence of drop velocity on drop size. Large uncertainties about the
H magnitude of errors at the outer edges of jets using both laser Doppler velocimetry and hot-wire anemometry
i suggest that this region is still poorly characterized even for incompressible jets.
¢

Nomenclature Superscripts
C.C,.C. =constants of Egs. (1) and (2) ) = mean value
d = nozzle orifice diameter, um ()’ = fluctuating component

}

!

)x F. . F., =flaess=V} /1 V2L, Vi ‘7;.;],
L = nozzle passage length, um

! P, = chamber gas pressure, MPa
] r = radial coordinate, cm Introduction
: Fos = half-radius (hal{-the-width at half-the-depth) of HE breakup of liquid jets is achieved through a large
; the drop axial velocity profile, cm Tvaricty of atomizers for an even larger variety of
‘| RFA,,  =relative fluctuation amplitude (standard applications.'? Its purpose is to increase the surface-to-
| deviation) of the axial velocity of the drops, volume ratio of the liquid, thus increasing the specific rates of
| =V, . o mass, momentum, and heat transfer and the vaporization
S,,.S.. =skewness= V3I[v2)32, V3 vz rate. Even restricting ourselves 1o injectors used in diesel
uU,u, = radial and axial components of the gas engines, many designs exist but the most common consists of
; velocity, m/s a group of cylindrical holes 100-300 um in diameter. '
Usa = axial velocity of the gas at the center- When a liquid is forced through a cylindrical hole into a
line of the jet, m/s gas, many modes of breakup are observed. In the one relevant
vV, V, =radial and axial components of the in internal combustion engines, no outer intact length is seen
drop velocity, m/s and the jet starts diverging at the nozzle exit. All other
l’/,“J = mass mean injection velocity, m/s parameters being the same, this regime, which has been called
! Vea =axial velocity of the liquid at the the atomization regime, is reached at high injection
centerline of the spray, m/s velocities—of the order of 100 m/s for the fuels and con-
X VY.Z = spatial coordinates (X is from the ditions of engine applications.*
; nozzle exit, see Fig. 3),cm Because 'of their practical importance, many aspects of
| X, =vmua} origin, cm atomizing jets have been studied extensively. In the 1930's
Ap = effective injection pressure, MPa significant data were collected on such global quantities as
0 = gas yolume frpcupn . downstream drop sizes, tip penetration rates, and average
" = liquid dynamic viscosity, kg/m-s spray angles.'* More recent efforts have attempted to
o, = chamber gas density, kg/m’ determine the structure of atomizing jets. For example, the
o = liquid density, kg/m" . . outer part in the immediate vicinity of the nozzle exit*® and
o, =liquid surface tension coefficient, kg/s* the inner part in the same region ” are being studied in detail.

Recently, laser techniques have been used to measure drop
velocity, drop size, and liquid volume concentrations at
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1264 WU, SANTAVICCA, BRACCO, AND COGHE

Conditions, Apparatus, and Procedure

n-hexane was injected into quiescent nitrogen at room
temperature but at such pressures that the ratio of the gas
density to the liquid density was 0.0256 and 0.0732. Three
single-hole round nozzles with sharp inlet and outlet and two
injection pressures (Ap 11.0 and 26.2 MPa) were used. The
effect of nozzle geometry was explored by varying the
diameter, 127 and 76.2 um, and the length-to-diameter ratio,
} and 4. These parameters, summarized in Table 1, were
chosen because earlier work® had shown the gas-to-liquid
density ratio and the nozzle geometry to be the most im-
portant variables in the initial formation of the spray and the
injection velocity is important in the subsequent development
and propagation of jets. Using the LDV system in the 90-deg
scatter mode, it was found that reliable drop velocity
measurements were possible at locations characterized by very
high drop number densities (210''/m?) and high velocity
gradients (up to Sm/s/mm). Thus, measurements were made
across the jet as close as 2.3 cm from the nozzle exit.

The experimental apparatus consisted of a spray chamber,
a liquid pressurization system, a nozzle assembly, and LDV
optics and instrumentation. A schematic diagram of the spray
chamber with the liquid pressurization system and the nozzle
assembly is shown in Fig. | and deiails are available in Refs. 6
and 10.

The spray chamber was constructed from several cylin-
drical steel sections, 19-cm i.d. and 90 cm in total length. The
window section has four quartz windows 10 cm in diameter.
The liquid pressurization system was designed to maintain
constant pressures up to 207 MPa during injection. The liquid
pressure before injection was measured with an AMINCO 47-
18340 gage and during injection with a Kistler 307A trans-
ducer with a frequency response of up to 240 kHz, a Kistler
504 charge amplifier, and a Tektronix 7313 storage
oscilloscope. During data acquisition the pressure changed by
less than 1%,

The single-hole round nozzles were drilled directly into the
nozzle units, whic were made of AISI 303 stainless steel, and
examined under a scanning electron microscope to assure that
the desired inlet sharpness was obtained and not altered
during the tests. Surface roughness was less than 5% of the
diameter. The nozzle unit and a typical spray are shown in
Fig. 2.

The liquid injection velocity was calculated from the
measured injection duration, the area of the nozzle, and the
total amount of liquid injected [V,,,,--volume/w(d/2)’AI]
This volume (mass) mean velocity was reproducible to within
+1%. The velocity profile within the nozzie was not
measured due to the nozzle's smallness and the very high
velocity of the liquid, but is expected to have been flat, except
near the nozzle walls, because the upstream liquid was
essentially quiescent and the length-to-diameter ratio of the
nozzle was much too small for transition to turbulence away
from the nozzle walls. Using the measured }',, and assuming
ideal velocity except near the walls, we estimate the injection
momentum to have been C,p, Vi x(d/2)’ with C =
1.0£10%.

Two LDV systems were used. Both systems employed a
Lexel 95-2 argon-ion laser operated at powers between 0.1 and
| W and TSI dual beam focusing and 90-deg scatter collection
optics. The two LDV systems used different laser
wavelengths, 514.5 and 488.0 nm; fringe spacing, 6.17 and
2.45 um; and focusing optics focal lengths, 600 and 250 mm,
respectively. The second system (Fig. 3) was superior because
of its capability 10 measure flow reversal with the TSI 9180
frequency shift unit and ity smaller probe volume
(0.2%x0.2x0.2 mm® vs 0.2x0.2x0.7 mm'). When using the
system with the Bragg cell the LDV signal was electronically
downmixed to 0 Hz for the axial velocity component
measurements in the core region where the drop velocity
fluciuations were small compared to the mean velocity and to
$ MHz near the outer edge of the spray and for all the
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measurements of the radial velocity. The beam crossing angle
was measured both with and without the Bragg cell to an
accuracy of +0.5%. The paralleiness of the two beams before
the focusing lens was also measured and found to be within
0.03 deg. The effect of this on the beam crossing location was
estimated to be negligible. The distance from the beam waist
to the beam crossing was also calculated and found (o be
smaller than the beam waist length. Therefore, it was assumed
that the beams crossed at their beam waist.

To allow for precise and repeatable positioning of the probe
volume within the spray, the entire optical system was
mounted on an X,Y,Z tranversing table while the spray
chamber remained fixed. The reported axial drop velocities
were measured along the —Z axis and the radial drop
velocities along the ~ Y axis (see coordinate system in Fig. 3).
At each axial location, first the axis of the spray was located,
based on the symmetry of the measured velocity profiles, and
the radial distances were referred to it. A minimum of five
measurements were made between the centerline and the half-
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Fig. 1 Spray apparatus and details of the injection cylinder: 1) in.
Jection cylinder, 2) spray chamber, 3) window, 4) gas reservoir, §)
driver gas pressure gage, 6) liquid reservoir, 7) bleeding valves, 8) test
liquid pressure gage, 9) hand pump, 10) test liquid tank, 11) drain, 12)
chamber gas pressure gage, 13) nitrogen cylinder, 14) regulsators, 15)
solenoid valves, 16) valve unit, 17) upper control gas chamber. 18)
lower control gas chamber, 19) control gas ports, 20} test liquid
conduil, 21) nozzle piece, 22) leak off, 23) nozzle, 24) test liquid.
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Fig. 2 Nozzle piece and typical spray (length of the field 270d).
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Table 1 Spray conditions®

Py ap, L Noazzle,

Series MPa Pp/P, MPa m/s d(pm)-L/d Xrd
A 1.48 0.0256 1.0 127 1274 600,800
B 4.24 0.0732 11.0 127 127-4 300.400, 500,600
C 4.24 0.0732 26.2 194 1274 400,500,600
D 424 0.0732 11.0 149 764 300,600,700,800
E 1.48 0.0256 11.0 12§ 76-1 300

®|iquid: n-hexane, p, =665 kg'm?, 4 =3.2x 104N -s/m?, o = 84x 10°N/m. Gas: nitrogen.
Room temperature.

Table2 Errors in LDV measurements'®

=< 5% for fluctuation amplitude
based on the maximum velocity
gradient of S(m/s)/mm

l Source Type Estimated error and correction
. LDV optics Beam-crossing angle 0.5%

i Fringe spacing No error due 1o refraction index
. Bragg cell <1%

i LDV Clock counting < 1% based on an intrinsic

: electronics accuracy of 1 ns

i Noise <3% withSNR=10and N;, =4
i

} Spray Velocity gradient =<2% for the mean value

{

i

!

. Effect of drop size No sensible effect on velocity

! distribution distribution was found for

' X 2300d

! Spray-to-spray Negligible

! variation

: Velocity biasing Correction applied for

* RFA,, <30%

] Statistics Axial component % 2% for the mean value

@ = 3% for Muctuation amplitude
; based on 2000 data and 50%

\ relative fluctuation amplitude
i Radial component No data reported for the mean

} value due to large error

!

|

| radius; therefore, the uncertainty in the positioning at an axial
location of 300d is no more than +8.3% of the half-radius
. and at axial positions further downstream the positioning
! error is an even smaller percentage of the half-radius.

{ The frequency was measured with a TSI 1990 counter
: processor interfaced to a Hewlett-Packard 21 MX minicom-

liquid and gas pressure were constant 1o better than 1%, Far
downstream, the 0.5-1.0 s window was long enough to collect
more than 2000 data points during one injection, but going
upsteam the rate of acquisition of acceptable data decreased
and up to 30 injections were necessary to obtain the same total
number of velocity data. For each set of measurements, the

"' puter. The number of fringes set on the counter processor number of rejected data, based on the criterion that the data
: over which the frequency was measured was eight or four. should fall within 3.5¢ of the mean, was always less than 1%
: Such a small number of fringes was used primarily to increase of the total.

! the data rate in the region of high drop number density. The

! use of fewer fringes also reduces the trajectory bias that can

Error Analysis
occur when a large number of fringes are used which favors

4 } v s An extensive analysis of experimental errors was carried
4 ; drop trajectories normal to the fringe planes. out. A detailed discussion is available in Ref. 10. Sources of
",f. ) The same initiation signal that operated the valve unit (item error, their estimated magnitudes, and possible corrections
:.- I 16 in Fig. 1) was used, through a control module, to enable are summarized in Table 2. Only the discussion of the effects

the counter to transmit data. The control module was also

used to insert a prefixed delay between spray initiation and the

start of data transmission and to program the data acquisition

i period for each test. The delay was necessary to allow the

' spray to reach a steady-state condition as determined from the
time history of the liquid pressure.

All the measurements were made in steady sprays. Even
though the data were taken in a 0.5-1.0 s period to prevent
recirculation inside the chamber from affecting the spray, the

N velocity of these sprays was so high, and their size so small,
‘ that their characteristic times are much shorter than 1.0s. The
longest time would be the convection time at the farihest axial
station (800d) for the largest of the nozzles (127 um) and the
slowest of the injection velocities (127 m/s). This time is less
than 0.03 s. As previously stated, during the measurements

of drop size distribution and velocity biasing is given here,

No direct measurement of the drop size distribution was
made from which the possible correlation between drop size
and velocity could be determined. However, along the axis it
was found that for X/d 2300 the velocity distribution is not
affected by varying the laser power or by limiting the observed
range of drop sizes to which the counter processor responded
(achieved by reducing the upper limit of the dc component of
the Doppler signals accepted by the LDV counter processor).
Figure 4 shows the effect on the mean velocity and the
fluctuation amplitude at X/d=800 of a variation of the
amplitude limit setting on the ccunter processor from 100 to
2. No significant change is seen in either P, or fluctuation
amplitude whereas the data rate changed drastically, in-
dicating a large selectivity in drop size. It was estimated that
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Amplitude Limit

o™ Fig. 4 Variation of mean and fluctuating components of the drop
:Ej axial velocity vs amplitude limit setting of the counter processor.
N
: 4 at least 90% of the total number of observable drops were
w rejected with the lower setting.! However, upstream of
J X/d =300, the mean velocity begins to show sensitivity to
P variations of the laser power (equivalent to changing the
| {._);,‘\ amplitude limit setting) and at X/d= 200_changc in V, is quite
! &,: large, as shown in Fig. 5. For this reason (_Jnly the
:‘)i' measurements for X/d=300 are reported and discussed.
P From the point of view of the structure of these sprays, the
; o fact that, for X/d =300, the drop velocity is independent of

the drop size along the axis implies that drop and gas
velocities there are the same; that is, the equilibrium limit has
been reached. For X/d <300, along the spray axis it is con-
cluded that the drop and gas velocities are different.

The major source of uncertainty in the estimates of errors
was the velocity bias effects. A velocity bias error can occur in
fluctuating flows since, with uniform particle concentration,
more particles are sampled per unit time when the gas velocity
is higher.!'2 The magnitude of the velocity bias error
depends on the local fluctuation amplitude. Buchhave'
calculated the velocity bias errors of the mean and the fluc-
tuating velocities for three-dimensional Gaussian isotropic
turbulence, for relative turbulence intensities up to 80%,
including the effects of trajectory bias but without frequency
shifting and showed that the errors increase monotonically
with the turbulence intensity. At 30% turbulence intensity the
velocity bias errors were between $ and 10% for the mean
velocity, and between 3 and 7% for the fluctuation amplituac,
depending on the ratio of the minimum number of fringe
crossings required for a measurement to the maximum
number of fringe crossings available.
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particle remains in the probe volume is known exactly.? A
simplified one-dimensional a posteriori correction can be
applied by weighting each individual measurement with a
weighting factor inversely proportional to the measured
velocity component.!' This correction method can reduce the
velocity bias error when the relative fluctuation amplitude is
small. For example, after correction, at 30% turbulence
intensity, the velocity bias errors are less than 4.3% for the
mean velocity and between 2 and 5.5% for the fluctuation
amplitude.'? For our sprays the one-dimensional correction
method was considered acceptable and was applied as long as
the relative fluctuation of the drop velocity was less than or
equal to 30%. Above 30%, the residence time can no longer
be approximated by the measured velocity component and the
one-dimensional correction overcorrects the mean velocity
and introduces errors that can be larger in magnitude, and
opposite in sign, than those of the uncorrected data. Thus, the
correction does not improve the accuracy of the data and the
uncorrected data may be in error by as much as 22% for the
mean velocity and 10% for the fluctuation amplitude at 80%
turbulence intensity if the angular dependence is minimized by
frequency shifting. "

Besides the drop velocity distribution, the half-radius as
determined from the drop axial mean velocity is also affected
by the velocity bias error because at the half-radius location
the fluctuation amplitude is about 45%. The half-radius was
derived both from data which had been velocity bias corrected
around the half-radius location (fully corrected) and from
data to which no velocity bias correction had been applied
around the half-radius location (partially corrected). In both
cases the one-dimensional velocity bias correction was applied
for relative fluctuations smaller than 30%, i.e., near the spray
centerline. The two sets of half-radius results differ from each
other by 10%. Buchhave!® showed that without correction the
half-radius is overestimated and with correction it is un-
derestimated. Thus, based on half the difference of these
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results the uncertainty in the half-radius due to the velocity
bias error is about = 5%. But when all other sources of error
are considered, the total uncertainty in the half-radius
becomes 26.6%,

The velocity bias correction is strictly valid only if the drop
number density can be assumed to be uncorrelated with the
local velocity and provided no other limitations on the mean
sampling rate interfere and further complicate the problem.
The drop concentration also must be sufficiently low so that
most of the time there is only one drop in the probe volume.!'
This condition was only marginally satisfied.

In summary, the one-dimensional correction was applied
on the drop velocity data as long as the relative fluctuation
amplitude was less than or equal 1o 30%. The result was that
the total maximum error of the reporied mean velocity was
estimated to be less than 10% up to the half-radius and in-
creasingly larger outward where it can be as large as 40% for a
relative drop velocity fluctuation amplitude of 80%. The total
error of the reported fluctuation amplitudes is, in general,
smaller than thai of the mean velocity.

Results and Discussion

The parameters varied in the experiment are listed in Table
1. Five conditions were examined with different combinations
of two gas-to-liquid density ratios, two injection pressures,
and three nozzle geometries. For each condition, the axial and
radial components of the drop velocity were measured by
LDV at several axial and radial locations. The measurements
discussed in this section were taken with 300-800 nozzle
diameters from the nozzle exit (2.29-10.16 cm).

We will consider, first, average drop velocities; then,
fluctuations of the drop velocities; and, finally, the im-
plications of the measurements about the structure of these
sprays. In the figures, the corresponding fluid quantities
measured by Wygnanski and Fiedler'® by hot-wire
anemometry in isothermal, low Mach number (in-
compressible) air-into-air jets are shown for reference and
comparison, but without implying that they constitute
definitive measurements of incompressible jets.

Figure 6 shows that, at sufficient distance from the injector,
the ratio of the centerline velocity to the injection velocity
tends to depend only on X/d (p,/p,) """, In this figure, data
other than ours are from Ref. 15. According to Hmze 18 this
scaling was first proposed by Thring and Newby,' but was
also obtained analytically by Kleinstein.2¢
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Fig. 6 Centerline velocily decay of different jets vs dimensionless
suial distance.
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To understand the possible reasons for the scatter of the
data in Fig. 6, consider a steady injection of a fluid {into a
second fluid g. At sufficient distance from the injector the
flow rate of the injected mass becomes negligible with respect
10 that of the entrained mass and the subsequent development
of the jet depends on the ambient fluid entraining more
ambient fluid as in “‘incompressible’ jets. This fully
developed incompressible jet limit must eventually be reached
independently of the nature of the fluids and of the structure
of the development region. Then, neglecting viscous stresses
and pressure gradients, conservation of axial momentum
gives

Cep; r/(,l.c\dzl4=cgpg 0‘:.:!’5.5.; )
J Yt 4]

‘-_}x.cl = ( C ) d(PJP,) @
Vo.cl 4C‘ CJ X- XD

where C, relates the self-preserving distributions of the mean
axial velocity and velocity fluctuations to the mean centerline
velocity and is equal'*'%-2 10 0.846 £2.9%;C = 0.0868 +7.9%
relates the half-radius to the distance from X,, the virtual
origin'“?"3; and C; relates the injection momentum 1o the
injection centerline velocity. For uniform injection velocity
profile C, =1 and the coefficient of Eq. (2) is 6.3 +9% (Capp
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Fig. 7 Dimensionless haif-radius of the drop axial velocity vs
dimensionless axial distance.
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and George,?' for example, give 5.8). In Fig. 6 the continuous
line corresponds 10 X, =0 whereas the two dotted lines cor-
respond to (Xy/d)/(p,/p,) " =30/(13.7)" and 100/(39.1)"
=8.12 and 16.0, respectively. The X, values of 30 and 100
will be explained later. The three lines show that, at sufficient
distance from the injector, the structure and length of the
development region become immaterial.

Often there is uncertainty about the value of C, for dif-
ferent experiments because the injection momentum generally
is not measured and because different authors may use
velocities other than the centerline velocity as reference in-
jection velocity. As previously stated, we did not measure the
injection velocity profile. We measured the mass mean in-
jection velocity, f’.,,,. and estimated that the injection
momentum was equal to C,p, ,,,,wd /4 with C,=1x10%.
Thus, using V,, for ¥, in Fig. 6 far from the injector our
data must fall on the continuous line. For data other than
ours we used the injection velocity given by the various
authors. We believe that the main reason for the scatter of the
data at Iarge values of X/d (p,/p,) " is the unceriainty about
the injection momentum, i.e., about the value of C,.

Another factor could be that the fully developed local
equilibrium condition was not reached by all the jets of the
figure, as suggested by Shearer and Faeth.'* For X/d= 300,
earlier it was shown that drop and gas velocity tend to be the
same along the axis and, presently, it will be shown that mean
and fluctuating components of the drop velocity have reached
self-preserving profiles. Thus, the conditions for convergence
to the solid line of Fig. 6 are met and our data tend to fall on
it.
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Finally, accurate measurements in these jets continue to be
difficult and experimental errors may be present. For
example, the data of Wygnanski and Fiedler are seen to tend
to a different slope in Fig. 6, but Capp and George®* report
that their faster decay may be due 1o wall effects.

Equation (2) can now be used to determine somewhat more
precisely the virtual origin. If V,,,,/U.(I is plotted vs X in
linear scales, our far-field data must converge on straight lines
of known slope, corresponding to the continuous line of Fig.
6. By extrapolating backward, the intersections of these lines
determine the virtual origins. We found X,=30d for
0/0,=13.7 and X,=100d for p,/p,=39.1, the other
variables having no clear effect on X, within the accuracy of
our data. Obviously, the convergence (o fully developed jets
occurs further downstream in our sprays than in in-
compressible jets (o,/p, = 1.0) for which the reported X,/d is
always smaller than 10. Having the virtual origins, the value
of C was determined by curve fitting the measured half-radius
data (Fig. 7), and found to agree with the value obtained from
incompressible jet data.

Another implication of Eq. (2) is that the tip penetration
rate of sprays for constant pressure injection into a stationary
unconfined gas can be estimated using the injection
momentum and the nozzle diameter, and without detailed
knowledge of their structure. The estimate is only rough near
the injector but becomes accurate far from it. This is because
under such conditions the velocity of the tip of a transient
spray is close to 70% of the local steady-state centerline
velocity 2438
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So far we have considered only the mean centerline velocity
and the half-radius. Figure 8 shows that for X/d>300 the
parallel between the mean axial drop velocity in our sprays
and the mean axial fluid velocity of incompressible jets ex-
tends to all axial and radia! locations and all conditions.
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The parallel extends also to the fluctuating components of
drop and fluid velocities but with increasing uncertainty. At
each axial and radial location the measured axial and radial
components of the drop velocity show a distribution of
values. The standard deviation and skewness and flatness of

these distributions are shown in Figs. 9 and 10. It is seen that
near the axis, the amplitude of the velocity fluctuation of the
drops falls into the lower part of the range of incompressible
jets and appears to be larger at the edge. Near the axis the
distribution of the drop velocity is also Gaussian, as indicated
by the skewness and flainess. At the edge of the sprays the
shapes of the spray drop and incompressible jet velocity
distributions appear to differ. Those of the drops tend 1o
remain more Gaussian.

The effects of corrections and differences between ex-
perimental techniques on the disparity beiween the drop
velocities at the edge of our sprays and the fluid velocity at the
edge of incompressible jets were evaluated for the case
(o] Ap=26.2 MPa, p, =4.24 MPa, nozzle 1274, X/d =400, and

o .5 1 1.5 2 2.5 3 r=2.75ry5. Results are shown in Fig. 9 (numbered 1-4 at

8) Dimensionless fluctustion amplitude. r/rps=2.15) and Table 3. The measured drop velocity
distribution is nearly Gaussian without the one-dimensional
correction (results 1 in the skewness and flatness graphs) but if
the one-dimensional correction is applied it becomes much
3 F narrower (test 2 in Table 3) and its parameters move closer to
the incompressible jet values (results 2 in flatness graph).

Wygnanski & Fiedler

s s . on Since the real quantities are most 'Iikcly between the corrected

1) v ‘o.' 4 and the uncorrected ones, there is a tendency toward better
vy o 'R” :° "° b agreement.

1 - . "o}"c‘ ? RPN The influence of the measuring technique appears to be

even stronger and to tend to further close the gap between our
results and those of the incompressible jet. It is recalled that
most of the incompressible jet data, including those of
Wygnanski and Fiedler, were taken with hot-wire
anemometry. We can approximate the spray data that would
have been obtained by hot-wire anemometry by disregarding
the direction of the drop velocity as determined by the Bragg
cell. The spray daia thus obtained would move closer to the

SRR .
° 0t T ‘Goussian volue -
1 1

1 i !
(o] .5 1 1.5 2 2.5 3
b) Skewness.

12 PV corresponding incompressible jet data as shown by results 3
o ar otk o me i and 4 in Table 3 and Fig. 9. Intermittency can also contribute
10 ° _':: :::: «o ::: - to explaining the differences. Our drops come to the edge of
e mr oo wn v the spray primarily with the gas from the core and reflect the
o me oo 0 e A fluctuations of this gas. Fluctuations that are averaged also
[y a2 . . .
B s & oo e ws o arvs over the potential fluid would be of smaller amplitude.
. o oo 00 e v Thus, it is likely that the difference between our drop
. L ¢ s oore M0 mee v O %O q velocity at the edge of our sprays and the corresponding fluid
C 6 * #v oou 0 Ne @ velocity at the edge of incompressible jets is less than shown in
; o a (] +v + ; . .
X o KRR AL x, Fig. 9. However, correct values cannot be established at this
, . .
- 4 ® . ov u_ ¥ ox time. o !
- b vt tvg'ﬁ niadh A In summary, indications are that for X/d =300, drops and ‘
) L_GW"' Caussion value gas are nearly in equilibrium. As a further elaboration of the
2 question of equilibrium, estimates of the characteristic

relaxation times of drop velocity?® and gas turbulence?’ were
considered.'® It was concluded that at X = 3004 the condition
for local equilibrium should be met at least by the more
numerous, smaller drops. Downstream of X = 300d, the drop
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- r/rs relaxation time does not increase appreciably, because
- ¢} Flatness collisions and coalescence are no longer numerous at low
= _ Fig. 10 Selt-similar profils of the dimensiontess fluctution of th liquid-volume fractions,”® whereas the turbulent eddy time

. ) . h - es e dimensiontess fluctuation o e H H } 3 H
] .
. : drop radis) selocits continues 10 increase as X“. Thus, a station is reached at
P
o
P - Table 3 Effects of the Bragg cell and the one-dimensional correction on the drop
:_-.',- velocity distribution
- " _‘ -
F—\-:-, "I' > '("?'

A Test Brapg cell Correction m/s m’s S Fos
g, 1 Yes No 0.024 0.503 0.57 5.2
ot 2 Yes 1-D 0.003 0.198 0.63 18.44
"-;.:_ 3 Nao No 0.360 0.351 1.89 7.63
',:\_-_ 4 No 1-D 0109 0166 182 25.16
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which most of the drops are in equilibrium with most of the
eddies.

Finally, it is recalled that for X <3004 all indications are
that local equilibrium is not present. This lack of equilibrium
near the injector and a successive but selective equilibration
process downstream are in general agreement with those
described by Faeth.?®

Summary and Conclusions

Axial and radial components of the drop velocity were
measured by LDV at numerous radial and axial locations
(300 s X/d<800) within diesel-type n-hexane sprays but at
room temperature, under steady injection pressure, and into
initially quiescent nitrogen. Five configurations were em-
ployed that differed in gas-to-liquid density ratio (0.0256,
0.0732), injection velocity (127, 149, and 194 m/s), and nozzle
geometry (straight cylindrical holes with sharp inlet and
outlet, diameters of 76 and 127 um, and length-to-diameter
ratio of 4 and 1). The LDV system was made up of an argon-
ion laser, TSI dual beam LDV optics with a Bragg cell, 90-deg
scatter collection optics, counter processor, and minicom-
puter.

In the error analysis we considered errors related to the
LDV optics, LDV electronics, velocity gradient broadening,
drop size distribution, drop number density, probe volume
position, finite sample size, and velocity bias. The magnitude
of the velocity bias error was particularly difficult to estimate
but it was concluded that for the reported data the total error
is less than 10% from the centerline to the half-radius and
progressively greater and more difficult to evaluate beyond
the half-radius. Significant uncertainties about the magnitude
of errors at the outer edge of jets with either LDV or hot-wire
anemometry suggest that this region is still poorly charac-
terized even for incompressible jets.

It was found that at sufficient distance from the nozzle so
much gas has been entrained that the subsequent structure of
the spray is dominated by the entrained gas and that the fully
developed incompressible jet structure and the equilibrium
limit are reached. This condition is being approached 300
nozzle diameters from the nozzle as shown by all the
measured drop velocity parameters: jet half-radius, centerline
velocity decay, axial mean velocity distribution, axial and
radial velocity fluctuation distributions, and independence of
drop velocity on drop size. However, the condition is not
verified at distances smaller than 300 nozzle diameters.

For engine applications, the distance up to 300 nozzle
diameters, i.e., the first 3-12 cm, is the one of prime interest.
If it is true that vaporization should speed up the achievement
of the fully developed state, it is also true that neither the
ambient gas nor the injection pressure are steady during fuel
injection and, therefore, accurate computations of engine
sprays are likely to require knowledge of the non-equilibrium
developing region.

On the other hand, under steady conditions it is possible to
estimate the steady-state centerline velocity and the tip
penetration rate for a broad range of density ratios using only
the injection momentum and the nozzle diameter. The
estimate becomes accurate far from the injector.
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ABSTRACT

’
A better understanding and characterization of the formation and propaga-
tion of high velocity sprays from single hole cylindrical nozzles is of impor-
tance both fundamentally and practically. The steady and transient structure of
these sprays is qualitatively similar to that of 1ncompte§sib1e jets but the i
breakup of the 1liquid column into drops and the presenée of drops introduce |
substantial quantitative differences. Measurements of the angle of the spray
and of the size of the drops near the nozzle suggest that the breakup of the
outer surface of the liquid jet is due to aerodynamic forces that lead to the ~
rapid and selective growth of surface perturbations generated within the nozzle. |
The state and mechanism of disruption of the inner part of the liquid jet is
less clear but sufficiently downstream only individual drops are present.
Recent LDV drop velocity measurements and detailed multidimensional computations
have shown that at distances of the order of hundreds of nozzle diameters so
much ambient gas has been entrained by thé spray that the subsequent structure

of the jet is dominated by the entrained ambient gas and the fully developed

incompressible jet structure and drop-gas equilibrium are approached.

ot
O

-
-_v o...

- ""f&'\..”& AL{A‘



ii
NOMENCLATURE

A, B, C, Cp, Cq» Ct Dimensionless constants of Eqs. 15, 16, 17,

1, 2, 3, respectively

Nozzle discharge coefficient

Nozzle diameter

Drop diameter

Turbulent diffusivity

Flatness of the fluctuation of the axial

component of the drop velocity, vy 3/vy'Z 2

Nozzle length |

Specific momentum flow rate

Pressure

Volumetric flow rate

Jet half radius (half the width at half the depth)

Liquid jet Reynolds number, pg'Vinj d/ug
- Skewness of the fluctuation of the axial
component of the drop velocity, vx'3/vx'Z 32
Gas velocity vector of components uy, ur
Mass mean injection velocity

Drop velocity vector of component uy, uy

Jet Weber number, py V}njz d/o

Axial distance from the nozzle exit
Virtual origin
End of intact liquid core

Beginning of fully developed entrained gas jet
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i r Radial distance
4
5 Ap Injection pressure difference
- . e Spray angle
) 0.5 Angle corresponding to rQ, 5
g. vg Gas viscosity
'
.' ug Liquid viscosity
S o Surface tension
1
;: Ouy Standard deviation of the fluctuation of the axial
W 1/2
component of the gas velocity, ux'2
? Ov, Standard deviation of the fluctuaton of the axial
. ' 1/2
'N conponent of the drop velocity, vx'Z
F Pg Gas density
- Py Liquid density
- 1 Characteristic time
".
(3.
SUPERSCRIPTS
3 ' Fluctuation
s - * ‘ Applicable to far field of sprays
-
' SUBSCRIPTS
N N
. CL On the centerline, r = 0
S
' e Entrained
=
0 At the nozzle exit, x = 0
'd
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INTRODUCTION

Sprays exhibit a large variety of geomettical, dynamic, and thermodynamic
configurations (1-3), The general features of these configurations are
understood but the details are not and predictions remain elusive. In this
field, as in many others, the stability of complex interfaces, non-equilibrium
thermodynamics, intricate reactions, and tufbulence ultimately set the limits of
our knowledge.

This i{s true even for the simplest of configurations, that is the one of
interest in this reviéw, in which a 1liquid is injected into a gas through a

%:single straight hole of circular crosssection, the two media have neglegible
angular momenta, and their thermodynamic states are such that vaporization and
chemical reactions can be ignored. Only dynamic forces control the field and
the evolution of interfaces and turbulence present the greatest difficulties.

A general idea of the structure of our sprays ;an be obtained by con-
sidering‘the similar and better understood family of incompressible jets (4-6),

Figufe 1 shows the initial propagation of a turbulent incompressible jet

(7) and of a spray (8). The propagation of the incompressible jet 1s marked by

/‘\the advancement and growth of a head vortex that is fed, from its downstream |
side, by the injected medium and the ambiént medium that was entrained in the
region between the vortex head and the nozzle. Practically, this intermediate
region 1s in its steady state configuration. That is, the head vortex leaves a |
turbulent, steady, incompressible jet behind itself. In the laboratory frame,
the vortex moves at a fraction of the local steady state centerline velocity.

Within the steady part, the shear layer, the potential core, and its end can be

seen.
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The corresponding picture of a spray raises several questions. Its inter=-
nal structure cannot be seen and is not known precisely because no technique has
been found to probe it without altering it significantly. There is a head
structure but its detéils are not obvious. It is expected that when the head
structure is at sufficient distance from the nozzle, enough ambient gas has been
entrained to set up a flow field similar to that of incompressible jets behind
1tse1f.. But closer to the nozzle, the 1liquid core, 1liquid ligaments, and drops
impose different configurations on the shear layer and on the head of the jet
due to their different modes of momentum transfer. The length of the transition
region is not known. Behind the head, however, the spray divergence angle, “
which is the only quantity that can be measured with relative ease, rapidly
achieves its steady state value (8), This indicates that also in sprays the
adjustment to steady state occurs primarily within their head region. In the
steady part of the spray of Fig. 1, as in the corresponding incompressible jet,
we expect the mean axial velocity to point downstream and the mean radial velo-
city to point toward the axis always. Thus we call them full-cone sprays in
contrast to hollow-cone sprays that exhibit mean recirculation flows along the

ax's and correspondingly larger spray angles. ~

Ir Fig. 1b the spray appears to start diverging immediately at the nozzle
exite Although this is the mode of breakup of interest in this revi=w, there
are‘chnr modes and some are shown (8) in Fig. 2. All other parameters being
the samé¢, at very low injection velocities a jet brecaks up many diameters
downstrcams and forms large drops. Surface tension ic the disruptive force
(Fig. 2aj, As the velocity is increased, the displacement of the gas by the

aoviug undulated 1iquid surface generates a pressure distributfon that aids sur-




ya face tension in awplifying surface waves (Fig. 2b). This process, which is

oy called aerodynamic interaction, eventually becomes the main distabilizing force
and leads to thé formation of very small drops while being opposed by surface
tension (Fig. 2¢). All along an intact surface is visible and the growth of

unstable surface waves is detectable. These are classical regimes of breakup of

:~: "circular liquid columns and major contributions to our understanding of them
':i were made (9) by Lord Rayleigh, C. Weber, and G.I. Taylor. They continue to be
1:§ the subject of current research (10) byt are not the one of interest to us here.

The regime of interest to us is obtained when the injection velocity is so

S
VE? /a\high that the intact length of the outer jet surface seems to disappear and the
'é;i | configuration of Figs. 2d and 1b 1s obtained. This regime is called the atonmi-

- zation regine (11) and the forces that control it are more complex and less
{iii known even though it has been the subject of extensive reseatéh because of its
e considerable practical importance.

- Thus we will concentrate on non~vaporizing, non-reactive, isothermal, ato-
fig wizing, full-cone sprays, such as those of Figs. 1b and 2d, and discuss their
,;: possible structure. We will consider first the steady far field and then the
tg_ breakup and development regions. For liquids such as water and hydrocarbon
;?é fuels injected at room temperature into standard or compressed air or similar
,g; gases, such sprays are found at injection velocities of the order of 102 m/s.
_;; The high velocity allows large mass flow rates to be obtained even with small
_;S nozzles. Their diameter is often of the order of 102 um so that their initial
S
*i? characteristic time is of the order of 1076 s. Drop diameters are of the order
b 2 : of 10 ym. The combination of large velocity and small size makes detalled

measurements difficult i{n the breakup and development regions., Thus their ini-

tial transient was observed for the first time only recently (8),
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THE STEADY FAR FIELD

The classical point source, boundary layer, similarity solution of Tollmien
(4) for incompressible jets is a satisfactory guide to the understanding of the
global structure of the far field of full cone sprays. In principle, only one
constant, such as C; that relates the effective turbulent diffusivity D; to the %
specific momentum flow rate M, 1s left indetermined by this solution and must be
evaluated from measurements. Then the width increases as x, the centerline
velocity decays as 1/x, and the ratio of the entrained mass to the injected mass

increases as x:

M- uo o &/ (1)
Q = CF §g ¢ 4/ (2)
D, =C, [Crm ;g,cx. a274)1/2 &)
To. 5 = 8 (3:(2”2 -2 e (xexp) (4)
Geom G et ey agy ey
0/ = (ten'/? e ¢ M2rc ) txexg)/a (6)
In the above equations the constants Cp and Cq are used to alate the spe-
N

cific momentum flow rate and the volumetric flow rate to the injection cen-
terline velocity through the injection velocitv profile, and xg is ““e virtual
origin. (In practice the determination of Cy, xp and of an additional needed
constant x2 is nontrivial even for incompressihle jets. We wili return to this
subject later.)

But at this point the growth of thc entrained wass and local characteristic
convectisn and diffusion times are of interest ro ug. Schlichting (4) gives C;

= 0,0i%] and Eq. 6 shows that for C, = Cq = 1, the entrained mass is already 10

times the injected one at 22 nozzle diameters fror ithe virtual origin. Local




2o

Rrs 5

o

:E$3 : convection and diffusion times can be obtained dividing (x-xp) by ;x,CL from Eq.
:?31 5 and rzo.s by D¢ from Eqs. 4 and 3. The two times are of the same order and
.ﬁ; increase as (x-xg)2.

iggg For our sprays the injected medium is a liquid and the entrained medium is
‘k%ﬁ a gas, so that the initial entrainment process can be expected to differ from

f 33 that of incompressible jets. But at sufficient distance from the injector, the
'§§§ ~ injected mass must become neglegible in comparison to the entrained one because
{Q%, | past a certain distance their ratio grows as x. Downstream of such region, the
{ - ' i - momentun that leads to the entrainment of more ambient gas resides mostly with
"‘{%‘ f\,tdhe ambient gas that was entrained earlier. That is, the structure of fully
;ggg , developed incompressible jets is recovered.

Imbedded in this far field there are drops that move in equilibrium with

the gas. This is because the time for the drop velocity to relax to the local

A

- H ; N

) gas velocity, pgdgz/laus. has an upper limit whereas the fluid times continues
et to grow as x2. Since there is a distribution of drop sizes and of eddy tiwmes,
f:ﬁ

$}§ o equilibration will be selective and dependent on conditions but at some

appropriate distance from the injector, all sprays become incompressible jets

A ' (*gominated by the entrained ambient medium and drops move within them as markers
ol '
o0 of the wotion of the ambient medium.
i n‘!‘ )
}}3 Having accepted the existence of this limit, Eqs. 1-6 can be modified for
g
,-{i direct application to the far field of sprays. Following Thring and Newby (12)
A9
9?§ and Kleinstein (13), we can equate the axial momentum evaluated at the nozzle
o
51§ exit, where the density is py, to that evaluated in the far field, where the
e density is pg and the velocity profile is fully developed, and conclude that, as
bl
ﬁf far as the far field 1s concerned, a liquid spray is an incompressible jet with
.E% . an equivalent specific momentum flow rate of M(pz/pg). Then Eqs. 1-6 become
2%
N
N
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M4 = Mo, /o) )
o = e, 8)
i} 1/2

D: Dt(pzlpg) (9

3.5 = To.5 (10)
;;.CL - ;x,CL (°z/°g)1/2 (an
Q308 = (@, 1) b 1p,)"2 (12)

1/2 a3

d* = d(pz/ps)

Parallel interpretations are that in the far field a spray is an incompressible

jet from an equivalent nozzle diameter (12) of d(pg/pg)l/2 or with an equivalent—a\
turbulent diffusivity (13) of Dt(pl/pg)llzo Notice however that the change in

the virtual origin is not identified by this theory since this quantity is
determined by the structure of the development gegion. The ratio of the tur-

bulent diffusion time to the drop relaxation time becomes

T* r 2 yu
1€ 0.5
—t. T () (14)
drop 2 | A <

Several authors have realized the existence of this limit and taken good
advantage of 1t (14), Byt only recently detailed drop velocity measurements ~
witin sprays of this family have provided direct evidence of it. W«e shall
revies these measurements’briefly. but first a note of caution. In specific
applications, particularly to time varying and/or closed volumes, the develop-
ment region is often the one of prime interest. Indeed in many cases no more
volume or time are provided than those necessary to complete some specific
degree of wixing of the injected and ambient media. In the far field limit, the

injected medium is but a trace within the ambient one. Thus we are not saying
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or implying that the local equilibrium limit is necessarily achieved in

applications. We are saying that these limits exist and are conceptually useful.
The data of Fig. 5 were taken in the sprays of Table 1 under steady injec-

tions, at éistances gréater than 300d, and with[the gas contained in a vessel of

su;h size that a wall-free environment was approach (15), These aﬁrays looked

ver& much like those of Figs. lb and 2d. Up to r = rg 5, the radial profiles

of the mean axial drop.velocity and of the amplitude, skewness, and flatness of

the fluctuation of the drop axial velocity are seen to fall within the range of

the corresponding fluid quantities measured in incompressible jets by Wygnanski
/7 and Fiedler (16) by hot wire anemometry and by others (46, 17,18) yith hot
» wire anemometry and laser Doppler velocimetry. The same parallel was also

found for the radial component of the drop velocity, for the centerline velocity

decay and for the width; Also, the drop velocity was measured with various

laser power levels, thus weighing the measurements in favor of drops of dif-

ferent sizes, and the fesults were found to be independent of it for x»300d. If

the drops ﬁad not been in equilibrium with the gas, theilr velocity would have

depended on their size. Thus indications are that for the full cone sprays of
ra?able 1 the incompressible jet and drop-gas equilibrium limits are achieved
around x = 300d and for r €< rg,5. For spray E, at x = 200d the measurements
indicate that drops are not in equilibrium with the gas and for x300d but
r>rg,5 the evidence is inconclusive because of large errors in both HWA and LDV
data (13),

There 1s no reason to expect that all sprays of Table 1 should reach

equilibrium at the same axial distance, but the data were not sufficiently

nunerous or sufficienty accurate to differenciate and the 300d location should
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be considered indicative. By extrapolating backward the centerline velocity
decay, and also checking the growth of the jet width, it was determined that xg
= 30d for pg/pg = 13.7 and xg = 100d for pg/pg = 39.1. If the 300d range and
the two values of xg are compared with the corresponding 50d-70d and 5d-10d
values for incoupressible jets (16). the reasonable conclusion is reached that
full-cone sprays develop into incompressible jets but require a longer distance

and that such distance i1s likely to be an increasing function of pz/pg. The

density ratio, pg/pg, is seen to be the main additional parameter for the
achievement and structure of the far field of these sprays.
THE STEADY NEAR FIELD

In considering the near field we will start from the outer part of the
spray in the immediate vicinity of the nozzle exit. It is of interest to know
what forces breakup the liquid surface in this region. From photographs, such
as Figs. 1b and 24, {t appears that the jJet starts diverging immediately at the
nozzle exit. Higher resolution images, such as Fig. 6 which will be recon-
sidered later, show isolated drops and an opaque, highly-irregular, diverging
fluid that could be made up of any combination of drops, ligaments, blobs, and
deformed intermingled gas-liquid continua.

Hypothesis about the breékup mechanism are not lacking (1), but quan-
titative evidence from contrullec well documented unequivocal experiments has
been very scant. One difficulty is that too many eveants that can contribute are
present simultaneously and caannot be investigated separately while still con-
sidering the same family of sprays.

For example, turbulence of the liquid was suggested as the main distabi-

lizing agent. The Reynolds number based on the nozzle diameter is generally
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N
:%g greater than 104 but the nozzle length-to~diameter ratio is seldom greater than
pzi 6 and fully developed turbulent pipe flows are not present. Moreover increasing
;‘v L/d from 10 to 80 leads to smaller divergence angles, i.e. to more stable jets
(e
Etﬁ (19’20). Within the nozzle, there are turbulent wall boundary layers and the
:j? sudden change of forces within them that occurs at the nozzle exit has been
I z suggested as distabilizing, but even in the most carefully machined metal
§§ nozzles the surface roughness is still no less than 10 ym with diameters in the
f:; range of 70 ym to 300 pm. It is not clear whether the tall ridges and deep
o valleys formed by surface roughness trip the flow or trap it. In any case,
fﬁ? /—\radiusing the exit edge with various curvatures brought about no measurable
E&: change in the i.nitial spray angle (20), cavitation 1s invariably present at the
{? entrance of practical nozzle of this family and has been suggested as the main
’i}; distabilizing agent. But cavitation free nozzles have been found to give imme-
?Eé diately diverging jets too (20), Thetr angle was smaller, indicating greater
- 5 stability, but the geometry of the cavitation-free nozzles was so different fron
'iiz the sharp-inlet, sharp-outlet, straight-wall geometry of standard nozzles that
f%; the entire nozzle flow field was also different.
jgs gﬁﬁﬂ (.\ Also suggested as possibly being responsible for the breakup are the
;Rﬁ ‘ rearrangement of the cross-section axial velocity profile, and liquid supply
:*E pressure oscillations. But none of these mechanisms alone was found adequate to
ﬁi? | : explain the trends exhibited by the initial spray angle (11, 20), However, any
;23 of them could be contributing to the break up process as explained below.
':5; ‘ Since aerodynamic interaction is known to cause the breakup of jets at
i;;\ lower speeds, the suggestion that it may continue to do so at higher speeds too
zzéi is a natural one. According to this view the length of jet surface over which
e
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f{jS unstable surface waves grow becomes shorter and shorter as the speed is

:Sﬁ - increased, due to the faster growth rate of the unstable waves, until it becones
. of the order of a few microns and is no longer detectable. Then the jet appears
tij to diverge immediately at the nozzie exit. This first order linear perturbation
f@. theory leaves a parameter unspecified that can be interpreted as the initial

amplitude of the surface perturbations when the 1liquid first enters the gas. If

this parameter is allowed to vary with nozzle geometry, as it would be the case

£$'-
;;: if different nozzle flows establish different initial perturbation levels
" through some combination of the previously mentioned processes, then a supple-
;;? mwented aerodynariic interaction mechanism results that seems to comply in a -,
é}; ‘itting way with a rather large set of experimental information. Castleman (21)
72 was among the early supporters of this view. Ranz (22) produced a theoretical
f;? framework for it, extending the work of Taylor (23), And Reitz (24,11) per-
Exz formed a comprehensive evaluation of most major proposals and sharpened the
2 {focus on {it.
;;é The supplemented aerodynamic theory leads to the predictiorn (22,24,25) of
.% the initial spray angle, the initial average drop size, and the length of the
P “1tu.t core. The equations are particularly simple in the liait
ié§'; . Rejz/pg WeJZ > 1 which is the one of practical interest in nany cases of ato- )
éﬁ ization. The angle 15 determined by combining the radial velocit, of the
‘ij fastest growing of the unstable surface waves with the axial injection velocity:
A
iﬁ 0 1 pg 1/2 31/2
R tany = ¢ 4n (q) -z (15)
EEE wher: A is a constant whose value depends on the nuzzle geometry and must be
WSR determined experiwentally. The iuitial average dr.o diameter is assumed to be

rroportional to the length of the most unstakrle waw-!
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" where B 18 a constant of order one and independent of the nozzle geometry (but
gi: dependent on the reference velocity that is chosen for the break up process).
3: And the length of the intact core is obtained by subtracting the mass of the
i‘ drops from the intact liquid column as they are formed:
3

§ 2o (?—)”2 an

-4

ij . where C is a proportionality constant.
ié : /T\ The prediction that in the atomization regime the initial value of the

o)
Ky spray angle depends almost exclusively on the density ratio and the nozzle

fjt geometry is surprising, considering the many parameters that could effect it,
ii but is generally born out by measurement. Figure 4 shows that,.for a given

a nozzle geometry, large changes in liquid properties, injection velocity, and gas
:ég pressure bring about only very small systematic trends and that the density
z;; ’ ratio dominates (20), Figure 5 gives an example of the effect of nozzle
2; geometry, all other parameters being the same (20), 1n spite of the success
‘%3 { there are limitations: The mechanism by which the nozzle geometry influences
gs the angle is not known; although the angle is very reproducible in any given
{5 experiment, its value depends somewhat on definitions and measuring techniques;
;3 when a broad range of injection velocities 1s explored a mild trend is detected
{3 at lower density ratios that does not conform with the expected one (20),
;f Recently (26,27) the diameter of drops was measured at the edge of ato-
Z£% mizing sprays in the immediate vicinity of the nozzle exit using photographs
Eig such as that of Fig. 6. The average diameter is given in Fig. 7 for the con-
il
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ditions of Table 2. When compared with Eq. 16, the measured values exhibit the
correct trends with respect to injection velocity, liquid properties and nozzle
geometry (it should have no effect and doesn't) but the incorrect one with
respect to gas density. Moreover the measured diameters are about a factor of 3
greater than expected. However it would appear that a reasonable explanation
for the disagreements exists (27), The drops that could be and were measured
are at the outer edge of the spray and not at their formation sites to which Eq.
16 applies. Due to the high drop number density in the region, it is unreason-
able to expect that each drop clears the congested area and comes out without
colliding with other drops. When collisions and coalescence are considered,
with a wmodel that will be mentioned presently, the discrepancies tend to disap-
pear. It is true, however, that one set of measurements and computations cannot
possibly be considered sufficient to close this complex subject.

Finally the data of Hiroyasu et al (19) support the prediction of Eq. 17
with respect to injection velocity and gas density. However the technique they
used, based on measurement of the electrical resistance between the nozzle and a
screen that could be moved axially, detects any continuous liquid connection
between the nozzle and the station of the screen. A ligament or a mixture of
1igu1id and gas would give the same signal as a solid 1liquid core free of gas.
Thus some uncertainty about the structure of the core persists.

Individually any one of the quoted experiments may not provide adequate
gupport for the supplemented aerodynamic theory of ztowmization. But together
they form a rather consistent picture. By cowparison, the support for alter-

native theories 1is very meager,
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THE TRANSIENT

Because of its lmportance in Diesel engines, many measurements have been
reported of the velocity of the tip of atomizing jets (28) and 1t is generally
agreed that {t 1is about 70% of the steady state centerline velocity. But
details are anything but clear as indicated, in the first instance, by the lack
of consistency in the reported curve fits for the tip ;elocity. In fact, the
transient of round jets has received very little detailed attention.

There seems to have been only one study of the transient of laminar
incompressible jets (29) and it concludes with wrong time and length scales for
1t.(30)  Recent measurements (31) of transient incompressible Jets were limited
in value by complicated nozzle conditions. Recent numerical studies (30) of the
transient of laminar, turbulent and spray jets gave reasonably complete infor-
mation about laminar jets, because there are no uncertain physical parameters
for such jets, but only indicative information about turbulent and spray jets,
because there are too many uncertain parameters for them.

The diffusive nature of jets makes the identification of their most
advanced position a matter of definition and a function of the experimental
technique. However it would appear that all Jets scale up in time at least
approximately. That a scaling exists is shown by pictures, such as those of
Fig. 1, and by the many correlations derived from them. That the scaling of
sprays is complex, or just an approximation, is indicated by the small probabi-
lity of the existence of exact similarity solutions‘of'their constitutive
equations.

Indeed if we reconsider Fig. lb and if we define the arrival of the spray

as the time at which the centerline velocity first achieves a selected percent
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of its steady state value, then we can identify different stages in the propaga-
tion that are controlled by different processes and therefore are likely to
séale in &ifferent ways.

For distances up to several tens of nozzle diameters there is likely to be
a compact liquid core that moves at the injection velocity. 1Its most forward
surface, however, encounters the resistance of the ambient gas. A stagnation
point can be conceived with gas forcing the liquid to flow radially away from it
and then backward. Thus the observed tip velocity will be a function of the
injection velocity, the density ratio, and the actual structure of the core.

Eventually the compact core disappears and ligaments and/or drops encounter —\
the ambient gas first. Since drops and gases exchange forces differently than
1iquid colunns and gases, the apparent tip velocity need not scale as it did
earlier. At sufficient distance from the nozzle, most of the jet momentum is
with the entrain=d gas and a gaseous head vortex moves into the gaseous environ-
ment and exchanges forces with it in a manner which is again different from that
of drops and liquid columns. Thus the écaling is likely to be different at dif-
ferent stages of the tip propagation.

Reitz filmed the initial propagation of atomizing jets (8) byt he was con- ~
cerned with an overall description of the process and a broad set of conditions
and his data are insufficient to determine accurate correlations for the initial
tip speed. Far from the injector, the tip velouity is about 70 of tihe velocitw
given by Eqs. 1] and 5 (with xg neglected with respect to x or estimated usim

the duata of Wu et al (15)). There is no dependatle information for rhe scali~.

of the intermediate region and its merging with the other two.
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il
§ E ' COMPUTATIONS
?:E:. . . A good test of the degree of our understanding of the structure of these
o sprays is the extent to which we can predict their details.
;“.f‘ : Navier-Stokes equations for two-phase flows are the appropriate conser-
‘::::‘: vation equations (32) but cannot be solved with adequate resolution for the
,'~ “ entire flowfield either analytically or numerically (33), Local averaging and
i'f} the adoption of semlempirical equations tp represent the effects of the
: neglected details are necessary. Even 0 no attempt has been made to compute
- the flow within the nozzle to predict the initial perturbations required by the
{EE f\aerodynamic theory of breakup to account for the effects of the nozzle geometry.
:\‘: \ Many difficulties remain even if one considers starting the computations at
‘the nozzle exit from some arbitrary initial perturbations of the liquid gas
‘% interface. Not predicted by the linear stability theory, and therefore unknown,
:7‘ are the size and size distribution of the unstable growths at breakup and the
; . time between successive ruptures. Away from the nozzle exit plane, as the
368
“'» generating surface moves closer to the axis of the jet, there are questions as
:ﬂ ! to what gas field i{s seen by the liquid interface. The velocity of the
entrained gas 1is closer to that of the generating surface. Thus it would appear
, 3 that the breakup process should become coupled to the structure of the two-phase
ﬁ;: flow field that exists between the presumed intact core qnd the unperturbed
-: outer gas. As the relative velocity between liquia and gas decreases inside the
\ jet, larger drops or ligaments or blobs should be formed; just as different
::.r breakup modes, and larger drops are found when the injection velocity is
E?‘g decreased, as {n going from Fig. 2d to Fig. 2a. Also, coalescence of the liquid
EE::. fragments can be expected where formation occurs due to the locally large value
e
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of the liquid volume fraction. The net outcome may be the small difference be-
tween large formation and coalescence rates. Thus it is clear that Eqs. 15-17
may provide sowme information about the outcome of the breakup, but in no way do
they give all that is necessary.

Faced with so many unknowns, even the most advanced of current spray com-
putations (3“), are Iinitiated at some distance from the nozzle from selected
drop size and velocity distributions. Then Eqs. 15-17 are used to give limits,
average values, and funcgional dependences. The results should become indepen-
dent of the details of the initial conditions at large distances from the
nozzle. This tends to be the case, for example, for the computed size of the ™\
drops when drop collisions and coalescence are included because a higher rate of
coalescence is found from smaller initial drops than from larger ones. Since,
as previously discussed, the far field is dominated by the entrained gas, the
only necessary conditions for the accurate computation of far field mean quan-

tities are knowledge and conservation of axial momentum and proper gas phase

turbulent diffusivity (35).  gyen those minimal requirements are not met

without some care. In general it is difficult accurately to compute the injec-
tion momentum of an actual spray even when its mass flow rate is known, because “~N
the injection velocity profile is not known (Cy in E7. 1 48 not known even if Cq
in Eq. 2 is known). k=€ models can be tuned to give the far field diffusivity

of incompressible jets i1f such diffusivity were known accurately. But this is

not the case as shown, for example, by Cp varying v thin t10% when different

sets of experimental data are used (135), Ssuccessf.: computations of fluc-
tuations, such as those of the drop velocity, requi). that the modcl be accurate

also at smaller scales. The comparisons (35) of Fig- 8 and 9 show adequate
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reproduction of mean axial velocities but the amplitude of the drop axial velo-

J‘ﬂ Vo -

%&u city fluctuation is underestimated by a factor of two. Several reasons could be
i . advanced for the specific disagreement of Fig. 9 but, ultimately, current quan—
o .
ﬁ?g: titative knowledge of the coupling between drop motion and turbulence gas eddies
g§,§ is incomplete (14,36), A broad review of the many approaches used in modeling
?{h sprays and other two-phase flows is given by Faeth a4,
2,‘?: SUMMARY
Tﬁ:& " What is known about the structure of non vaporizing, non reactive sprays
e from single hole cylindrical nozzles can pe summarized with the help of Fig. 10.
ﬁgﬁ I At sufficiently high injection velocity the jet is found to diverge inmme-
iazf diately at the nozzle exit where fine drops are observeds The outer surface of
f%:. the liquid is disrupted by the interaction with the ambient gas that leads to
N
E§E§ ; the rapid and selective growth of surface waves whose initial amplitudes are
ﬁéx: controlled by events that occur within the nozzle. This view allows one to pre-
_ dict the initial angle of the spray. The parallel prediction of the size of the

drops thus formed also compares favorably with measurements if collisions and

coalesce of the drops after their formation are included.

~ The disruption of the liquid column eventually reaches the axis of the Jet,
i.e. 1s complete, because only isolated drops are found downstream. However the
geometry, structure, and mode of breakup of the core of the jet are not known,

but there are fndications that the length of the intact core, x}, may approach

100 nozzle diameters (versus 10, for incompressible jets).

While the internal breakup continues, gas from the environment is entrained

vi 4

rapidly, the entrained gas eventually becomes dominant and achieves the struc-

A ture of fully developed incompressible jets. Within it, drops tend to reach
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equilibrium but selectivity since both drop and eddy sizes are distributed. The
fully developed equilibrium distance, x3, is several hundred nozzle diameters
(versus several tens, for ipcompressible jets). The virtual origin of this
fully developed far field, xg, is of the order of tens of nozzle diameters
(versus order of nozzle diameters, for incompressible jets).

The precise relationship between xg, il, and x2 and shape of the
corresponding boundaries is not known because the structure of the transition
region is not known. But the three lengths increase with increasing liquid-gas
density ratio.

The propagation velocity of the tip, or head, of these sprays is a fraction
of their steady state centerline velocity. In the fully developed equilibrium
region this fraction is abo;t 702 but in the development region it is not known.
Since the steady state centerline velocity scales in an established way in the
fully developed equilibrium region, so does the tip velocity. Experimental
information suggests that the steady state centerline velocity and the tip velo-
city scale also in the development region, at least approximately. But these
scaling functions are determined by the structure of the development region and
therefore are not known precisely.
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Table 1: Spray Conditions for the Drop Velocity Measurements
of Figs. 3, 8, and 9 (from Ref. 15)
Series Pg pgleg Ap .vinj Nozzle X/d
(MPa) (MPa) (m/s) d(um)-L/d
A 1,48 0.0256 11.0 127 127-4 600,800
B 4,24 0.0732 11,0 127 127-4 300,400,500,600
c 4,24 0.0732 26,2 194 127-4 400,500,600
"D 4.24 0.0732 11.0 149 76-4 300,600,700,800
E 1,48 0,0256 11.0 125 76-1 300
I
Liquid : n-hexane, pg = 665 kg/m3, ug = 3.2 x 104 N g/m2,
g = 1.84 x 102 N/m. Gas : nitrogen. Room temperature.
7~
oy ; - ;'}‘ .'-'m:_'-:_:.";.‘:x '-"‘\. et ‘“\.“"" "\ x_fij-ﬁ'x""- i L TSRS
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Table 2: Spray Conditions for the Drop Size Measurements

of Figs. 6 and 7 (From Refs. 26, 27)

Series Egzzle P8 Pg Liquid Ap .vinj Cp Re 4 We ; g:o:
(um) (MPa) (kg/m3) (MPa) (m/s) x10-4 x10-4
1 335-4 1.48 17.0 n-C6H14 1,38 59.4 0,92 4,14 4,26 119
2 335-4 2,86 33.0 n-C6H14 1.38 52,4 0.81 3,65 3.32 109
3 335-4 1.48 17.0 n=-C6H14 3,45 79.2 0.78 5.51 7,58 116
4 335-4 2.86 33.0 n-C6H14 3,45 92.8 0.91 6.46 10.41 111
5 335-4 1.48 17,0 n-C6H14 6,90 99.0 0.69 6,89 11.85 107
6 335~4 2,86 33.0 n-C6Hl14 6.90 111,0 0.77 7.73 14.89 117
7 335-10  1.48 17,0 n-C6H14 3,45 79.2 0.78 5,51 7,58 119
8 127-4 1.48 17,0 n-C6H14 3,45 78.1 0.77 2,06 2,79 114
9 335-4 1.48 17.0 n-Cl4H30 3,45 81,2 0.86 0.95 6.31 103
""""" SR T S e e e
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FIGURE CAPTIONS

Development of: a) a turbulent incompressible jet (7)

(water in water, Rep = 4 10%); and b) an atomizing spray (&)
(50% glycerol + 50% water into Np)
Some regimes of breakup of 1iquid jets (8)
Mean axial drop velocity and ampliiude. skewness, and flat-
ness of the fluctuation of the axial drop velocity for the
atomizing sprays (15) of Table 1.

Initial angle of atomizing jets versus density ratio with
fixed nozzle geometry. Injections of glycerol-water, water,
hexane, tetradecane into Nz, He, Xe, Ar at liquid pressures
of 500-13,300 psi and D = 254, 343, and 610 uym. Room temp-
erature (20),

Initial angle of atomizing jets versus nozzle length-to-
diameter ratio: ¢ from Ref. 20; X from Ref. 19.
Edge of spray and droplets in the immediate vicinity of the
nozzle exit for an atomizing jet (26-27),

Average diameter of drops in the immediate vicinity of the
nozzle exit for the atomizing jets of Table 2: O measured;
@ expected trends from the supplemented aerodynamic
theory (26-27),
Measured(15) mean axial drop velocity and computed (35)
mean axial drop and gas velocities for Spray A of Table 1.
Measured (15) amplitude of the fluctuation of the axial drop
velocity and computed (35) amplitudes of the fluctuations of
the axial drop and gas velocities for Spray C of Table 1.

Schematic structure of atomizing jets.
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